Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
BMC Emerg Med ; 24(1): 95, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824546

OBJECTIVE: This study assesses the influence of hyperkalemia on both disease severity and the risk of mortality among patients admitted to the emergency room. METHODS: This retrospective observational study utilized data from the Chinese Emergency Triage Assessment and Treatment database (CETAT, version 2.0), which was designed to evaluate and optimize management strategies for emergency room (ER) patients. Patients were systematically categorized based on serum potassium levels. Relationships between serum potassium levels, risk of mortality, and the severity of illness were then analyzed using multifactorial logistic regression and through Receiver Operating Characteristic (ROC) analysis. The effectiveness of various treatments at lowering potassium levels was also investigated. RESULTS: 12,799 emergency patients were enrolled, of whom 20.1% (n = 2,577) were hypokalemic and 2.98% (n = 381) were hyperkalemic. Among hyperkalemic patients, the leading reasons for visiting the ER were altered consciousness 23.88% (n = 91), cardiovascular symptoms 22.31% (n = 85), and gastrointestinal symptoms 20.47% (n = 78). Comparative analysis with patients exhibiting normal potassium levels revealed hyperkalemia as an independent factor associated with mortality in the ER. Mortality risk appears to positively correlate with increasing potassium levels, reaching peaks when blood potassium levels ranged between 6.5 and 7.0. Hyperkalemia emerged as a strong predictor of death in the ER, with an Area Under the Curve (AUC) of 0.89. The most frequently prescribed treatment for hyperkalemia patients was diuretics (57.32%, n = 188), followed by intravenous sodium bicarbonate (50.91%, n = 167), IV calcium (37.2%, n = 122), insulin combined with high glucose (27.74%, n = 91), and Continuous Renal Replacement Therapy (CRRT) for 19.82% (n = 65). Among these, CRRT appeared to be the most efficacious at reducing potassium levels. Diuretics appeared relatively ineffective, while high-glucose insulin, sodium bicarbonate, and calcium preparations having no significant effect on the rate of potassium decline. CONCLUSION: Hyperkalemia is common in emergency situations, especially among patients with altered consciousness. There is a strong positive correlation between the severity of hyperkalemia and mortality risk. CRRT appears to be the most effective potassium reducting strategy, while the use of diuretics should be approached with caution.


Emergency Service, Hospital , Hyperkalemia , Intensive Care Units , Humans , Hyperkalemia/mortality , Hyperkalemia/therapy , Retrospective Studies , Male , Female , Middle Aged , China/epidemiology , Aged , Potassium/blood , Adult , Severity of Illness Index , Hospital Mortality , ROC Curve , East Asian People
2.
Angiogenesis ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38700584

Current treatments of brain arteriovenous malformation (BAVM) are associated with considerable risks and at times incomplete efficacy. Therefore, a clinically consistent animal model of BAVM is urgently needed to investigate its underlying biological mechanisms and develop innovative treatment strategies. Notably, existing mouse models have limited utility due to heterogenous and untypical phenotypes of AVM lesions. Here we developed a novel mouse model of sporadic BAVM that is consistent with clinical manifestations in humans. Mice with BrafV600E mutations in brain ECs developed BAVM closely resembled that of human lesions. This strategy successfully induced BAVMs in mice across different age groups and within various brain regions. Pathological features of BAVM were primarily dilated blood vessels with reduced vascular wall stability, accompanied by spontaneous hemorrhage and neuroinflammation. Single-cell sequencing revealed differentially expressed genes that were related to the cytoskeleton, cell motility, and intercellular junctions. Early administration of Dabrafenib was found to be effective in slowing the progression of BAVMs; however, its efficacy in treating established BAVM lesions remained uncertain. Taken together, our proposed approach successfully induced BAVM that closely resembled human BAVM lesions in mice, rendering the model suitable for investigating the pathogenesis of BAVM and assessing potential therapeutic strategies.

3.
J Electromyogr Kinesiol ; 76: 102869, 2024 Jun.
Article En | MEDLINE | ID: mdl-38479095

Decomposition of EMG signals provides the decoding of motor unit (MU) discharge timings. In this study, we propose a fast gradient convolution kernel compensation (fgCKC) decomposition algorithm for high-density surface EMG decomposition and apply it to an offline and real-time estimation of MU spike trains. We modified the calculation of the cross-correlation vectors to improve the calculation efficiency of the gradient convolution kernel compensation (gCKC) algorithm. Specifically, the new fgCKC algorithm considers the past gradient in addition to the current gradient. Furthermore, the EMG signals are divided by sliding windows to simulate real-time decomposition, and the proposed algorithm was validated on simulated and experimental signals. In the offline decomposition, fgCKC has the same robustness as gCKC, with sensitivity differences of 2.6 ± 1.3 % averaged across all trials and subjects. Nevertheless, depending on the number of MUs and the signal-to-noise ratio of signals, fgCKC is approximately 3 times faster than gCKC. In the real-time part, the processing only needed 240 ms average per window of EMG signals on a regular personal computer (IIntel(R) Core(TM) i5-12490F 3 GHz, 16 GB memory). These results indicate that fgCKC achieves real-time decomposition by significantly reducing processing time, providing more possibilities for non-invasive neuronal behavior research.


Algorithms , Electromyography , Muscle, Skeletal , Signal Processing, Computer-Assisted , Electromyography/methods , Humans , Muscle, Skeletal/physiology , Motor Neurons/physiology , Action Potentials/physiology , Male
4.
Front Neurosci ; 18: 1306054, 2024.
Article En | MEDLINE | ID: mdl-38545605

To utilize surface electromyographics (sEMG) for control purposes, it is necessary to perform real-time estimation of the neural drive to the muscles, which involves real-time decomposition of the EMG signals. In this paper, we propose a Bidirectional Gate Recurrent Unit (Bi-GRU) network with attention to perform online decomposition of high-density sEMG signals. The model can give different levels of attention to different parts of the sEMG signal according to their importance using the attention mechanism. The output of gradient convolutional kernel compensation (gCKC) algorithm was used as the training label, and simulated and experimental sEMG data were divided into windows with 120 sample points for model training, the sampling rate of sEMG signal is 2048 Hz. We test different attention mechanisms and find out the ones that could bring the highest F1-score of the model. The simulated sEMG signal is synthesized from Fuglevand method (J. Neurophysiol., 1993). For the decomposition of 10 Motor Units (MUs), the network trained on simulated data achieved an average F1-score of 0.974 (range from 0.96 to 0.98), and the network trained on experimental data achieved an average F1-score of 0.876 (range from 0.82 to 0.97). The average decomposition time for each window was 28 ms (range from 25.6 ms to 30.5 ms), which falls within the lower bound of the human electromechanical delay. The experimental results show the feasibility of using Bi-GRU-Attention network for the real-time decomposition of Motor Units. Compared to the gCKC algorithm, which is considered the gold standard in the medical field, this model sacrifices a small amount of accuracy but significantly improves computational speed by eliminating the need for calculating the cross-correlation matrix and performing iterative computations.

5.
Stroke Vasc Neurol ; 2023 Nov 10.
Article En | MEDLINE | ID: mdl-37949480

BACKGROUND: Surgical resection of the lesions remains the main treatment method for most symptomatic spinal cord cavernous malformations (SCCMs) to eliminate the occupation and associated subsequent lifelong haemorrhagic risk. However, the timing of surgical intervention remains controversial, especially for patients in the acute stage after severe haemorrhage. METHODS: Patients diagnosed with SCCMs who were surgically treated between January 2002 and December 2021 were selected and retrospectively reviewed. The Modified McCormick Scale (MMS) was used to evaluate neurological and disability status. All medical information was reviewed, and all patients were followed up for at least 6 months. RESULTS: A total of 279 patients were ultimately included. With regard to long-term outcomes, 110 (39.4%) patients improved, 159 (57.0%) remained unchanged and 10 (3.6%) worsened. For patients with an MMS score of 2-5 on admission, in univariate and multivariate analyses, a ≤6 weeks period between onset and surgery (adjusted OR 3.211, 95% CI 1.504 to 6.856, p=0.003) was a significant predictor of improved MMS. Among 69 patients who first presented with severe haemorrhage, undergoing surgery within 6 weeks of the onset of severe haemorrhage (adjusted OR 4.901, 95% CI 1.126 to 21.325, p=0.034) was significantly associated with improvement of MMS score. CONCLUSION: Surgical timing can influence the long-term outcome of SCCMs. For patients with symptomatic SCCMs, especially those with severe haemorrhage, early surgical intervention within 6 weeks can provide more benefit.

6.
Adv Sci (Weinh) ; 10(35): e2305523, 2023 Dec.
Article En | MEDLINE | ID: mdl-37875400

Interfacial solar steam generation (ISSG) is the main method to get fresh water from seawater or wastewater. The balance between evaporation rate and salt resistance is still a major challenge for ISSG. Herein, a wood aerogel island solar evaporator (WAISE) with tunable surface structure and wettability by synthesizing poly(n-isopropylacrylamide)-modified multi-walled carbon nanotube photothermal layers. Compared to dense surface structure evaporators, interfacial moisture transport, thermal localization, and surface water vapor diffusion of WAISE are greatly promoted, and the evaporation rate of WAISE increased by 87.64%. WAISE allows for record performance of 200 h continuous operation in 20% NaCl solution without salt accumulation. In addition, the photo-thermal-electric device is developed based on WAISE with continuous water purification, power generation, and irrigation functions. This work provides a new direction for the development of multifunctional water purification systems.

7.
Tissue Cell ; 83: 102139, 2023 Aug.
Article En | MEDLINE | ID: mdl-37329685

BACKGROUND: The endoplasmic reticulum stress (ERS) pathway, inositol-requiring enzyme-1 alpha-X-box binding protein-1 (IRE1α-XBP1), has been considered as a critical factor of human periodontal ligament cells (hPDLCs) in proliferation and osteogenesis. This study aimed to explore the effect and mechanism of XBP1s, which was cleaved by IRE1α on the proliferation and osteogenesis of hPDLCs. METHODS: ERS model was induced by tunicamycin (TM); cell proliferation was assessed by CCK-8 assay; pLVX-XBP1s-hPDLCs cell line was established by lentivirus infaction; expression of ERS-related protein including eIF2α, GRP78, ATF4 and XBP1s, autophagy-related P62 and LC3, and apoptosis-related Bcl-2 and Caspase-3 were detected by Western Blot; expression of osteogenic genes was detected by RT-qPCR, and senescence of hPDLCs was explored by ß-galactosidase staining. Furthermore, the interaction between XBP1s and human bone morphogenetic protein 2 (BMP2) was examined by immunofluorescence antibody test (IFAT). RESULTS: The results showed an increase in proliferation of hPDLCs from 0 to 24 h when ERS was induced by TM treatment (P < 0.05). XBP1s overexpression induced hPDLCs proliferation, upgraded autophagy and degraded apoptosis significantly (P < 0.05). In pLVX-XBP1s-hPDLCs, the ratio of senescent cells was markedly decreased after several passages (P < 0.05); After infection with pLVX-BMP2 lentiviral supernatant, IFAT result showed that XBP1s and BMP2 well co-located in the cytoplasm of pLVX-XBP1s-hPDLCs and PERK-ATF4 ERS branch was activated, meanwhile, there were obviously more mineralized nodules and mRNA expression of osteogenesis-related genes was continually up-regulated (P < 0.05). CONCLUSIONS: XBP1s promotes the proliferation via regulating the autophagy and apoptosis, and enhances expression of osteogenic genes in hPDLCs. The mechanisms in this regard need exploring further for periodontal tissue regeneration, functionalization and clinical applications.


Osteogenesis , Protein Serine-Threonine Kinases , Humans , Osteogenesis/genetics , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Endoribonucleases/pharmacology , Periodontal Ligament/metabolism , Cells, Cultured , Cell Proliferation/genetics , Endoplasmic Reticulum Stress/genetics , Cell Differentiation/genetics , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/pharmacology
8.
Brain ; 146(9): 3634-3647, 2023 09 01.
Article En | MEDLINE | ID: mdl-36995941

Cerebral cavernous malformations (CCMs) and spinal cord cavernous malformations (SCCMs) are common vascular abnormalities of the CNS that can lead to seizure, haemorrhage and other neurological deficits. Approximately 85% of patients present with sporadic (versus congenital) CCMs. Somatic mutations in MAP3K3 and PIK3CA were recently reported in patients with sporadic CCM, yet it remains unknown whether MAP3K3 mutation is sufficient to induce CCMs. Here we analysed whole-exome sequencing data for patients with CCM and found that ∼40% of them have a single, specific MAP3K3 mutation [c.1323C>G (p.Ile441Met)] but not any other known mutations in CCM-related genes. We developed a mouse model of CCM with MAP3K3I441M uniquely expressed in the endothelium of the CNS. We detected pathological phenotypes similar to those found in patients with MAP3K3I441M. The combination of in vivo imaging and genetic labelling revealed that CCMs were initiated with endothelial expansion followed by disruption of the blood-brain barrier. Experiments with our MAP3K3I441M mouse model demonstrated that CCM can be alleviated by treatment with rapamycin, the mTOR inhibitor. CCM pathogenesis has usually been attributed to acquisition of two or three distinct genetic mutations involving the genes CCM1/2/3 and/or PIK3CA. However, our results demonstrate that a single genetic hit is sufficient to cause CCMs.


Hemangioma, Cavernous, Central Nervous System , Proto-Oncogene Proteins , Animals , Mice , Hemangioma, Cavernous, Central Nervous System/genetics , Mutation/genetics , Phenotype , Spinal Cord/pathology
9.
J Hazard Mater ; 446: 130729, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36621295

The massive discharge of oily wastewater and oil spills are causing serious pollution to water resources. It is urgent to require clean and efficient method of purifying oily emulsions. Although the separation membranes with selective wettability have been widely used in the efficient purification of oil/water emulsions. It is still very challenging to develop functional films that are environmentally friendly, fouling resistant, inexpensive, easy to prepare, easy to scale, and highly efficient. Cellulose nanocrystalline-based composite membranes (CCM) were prepared by surface-initiated atom transfer radical polymerization (SATRP) and vacuum self-assembly. The prepared CCM is superhydrophilic and superoleophobic underwater due to the hydrophilic nature of the modified cellulose-nanocrystalline and the micro-nano surface structure. The CCM shows high separation efficiency (> 99.9 %), high flux (16,692 L-1·m-2·h-1·bar-1) for surfactant-stabilized oil-in-water emulsions, good cycle stability and anti-fouling performance. This biomass-derived membrane is green, cheap, easy to manufacture, scalable, super-wettability, and durability, it promises to be an alternative to separation membranes in today's market.

10.
J Hazard Mater ; 441: 129900, 2023 01 05.
Article En | MEDLINE | ID: mdl-36096060

Oily sewage discharged from indiscriminate industrial and frequent oil spills have become a serious global problem. There is an urgent need to separate stable oil/water emulsions by efficient and environmentally friendly methods. Membrane separation technology has the advantages of low energy consumption and low cost, thus is an effective solution to the problems of oily wastewater. However, the manufacture of multifunctional membranes with high efficiency, high flux and self-cleaning using renewable materials remains a challenge. Herein, three-dimensional (3D) smart membranes with switchable superhydrophobic-hydrophilic surfaces were prepared by grafting photo-responsive poly-spiropyran (PSP) on wood-based substrates via surface atom transfer radical polymerization. This novel membrane can efficiently separate stabilized water-in-oil and oil-in-water emulsions due to reversible hydrophilic-hydrophobic transition by switching UV and visible light irradiation. Remarkably, after immobilization, the PSP grafted on the wood substrate exhibited a faster photo response effect than the free spiropyran (SP). More importantly, the prepared 3D smart membranes showed exceptional high flux (4392 L•m-2•h-1) and efficiency (above 99.99 %), good cycle stability (99.99 % after 12 times) and durability (available for at least 60 days) for the separation of surfactant-stabilized water-in-oil emulsions. This work opens a new avenue for the design of functional biomass-derived membranes for efficient and sustainable oily wastewater treatment with high flux, easy scale-up, and green regeneration.


Wastewater , Wood , Benzopyrans , Emulsions/chemistry , Indoles , Nitro Compounds , Oils/chemistry , Sewage , Surface-Active Agents/chemistry , Wastewater/chemistry
11.
Adipocyte ; 11(1): 501-509, 2022 12.
Article En | MEDLINE | ID: mdl-35975944

In cell-assisted lipotransfer, adipose-derived stem cells play a crucial role in enhancing fat graft retention. In vitro, human adipose-derived stem cells were modified with Bcl-2 gene. In vivo, aspirated fat was mixed with the Bcl-2-modified adipose-derived stem cells and then transplanted subcutaneously into nude mice. The retention of fat graft was evaluated. The surviving Bcl-2-modified adipose-derived stem cells were tracked after transplantation. Capillary density was quantified after transplantation. Transplantation with Bcl-2-modified adipose-derived stem cells enhanced fat graft retention by 49% and 114% at 6 weeks compared with the Fat + vector-modified adipose-derived stem cell group and Fat-only group, respectively. Transplants from the Fat + Bcl-2-modified adipose-derived stem cell group had significantly more intact adipocytes and lower levels of fat necrosis and fibrosis at 6 weeks. The survival of Bcl-2-modified adipose-derived stem cells increased by 33% at 3 weeks and 54% at 6 weeks, respectively, compared with vector-modified adipose-derived stem cells. The capillary density was 24% higher in Fat + Bcl-2-modified adipose-derived stem cell group than in Fat + vector-modified adipose-derived stem cell group or 60% higher than in Fat-only group at 3 weeks.


Adipocytes , Graft Survival , Adipocytes/transplantation , Adipose Tissue/transplantation , Animals , Humans , Mice , Mice, Nude , Stem Cells
12.
J Periodontal Res ; 57(4): 869-879, 2022 Aug.
Article En | MEDLINE | ID: mdl-35730345

BACKGROUND AND OBJECTIVE: Periodontitis is a chronic progressive inflammation that invades periodontal supporting tissues, in which periodontal tissue regeneration engineering offers new hope for prevention and treatment, including seed cells, scaffolds, and growth factors. In recent years, scholars have shown that autologous teeth can be used as new bone tissue repair materials for periodontal regeneration and bone tissue repair. The aim of this study was to establish a human periodontal ligament cell line that expresses the human bone morphogenetic protein 2 gene (BMP2) in a stable manner using lentiviral mediation in order to explore the effect of BMP2 from autologous tooth on the proliferative and osteogenic capacity of human periodontal ligament cells (hPDLCs). MATERIALS AND METHODS: Human periodontal ligament cells were cultured, subcultured, and identified, and then homologous recombinant lentivirus plasmid plv-BMP2 was constructed and transfected into the third passage (P3 ) hPDLCs. After that, the effect of BMP2 on its proliferation was detected by CCK-8, at the same time, the osteogenic induction of hPDLCs was carried out at 7, 14, and 21 days, and then the effect of BMP2 on its osteogenic ability was detected by alizarin red staining, alkaline phosphatase activity determination, and the mRNA expression levels of osteogenic-related genes using real-time fluorescence quantitative PCR, including alkaline phosphatase, runt-related transcription factor 2, bone sialoprotein, osteocalcin, osteopontin, and collagen I. Finally, spss26.0 software was used for statistical processing. RESULTS: The results showed that cells transfected with the homologous recombinant lentiviral plasmid pLV-BMP2 had a similar morphology to normal hPDLCs, showing a typical radial arrangement; the cell proliferative capacity of the pLV-BMP2 group as measured by CCK-8 was enhanced compared with the control group and the pLV-puro group (p < .05); alizarin red staining and alkaline phosphatase activity assay showed that the osteogenic ability of pLV-BMP2 was significantly enhanced compared with the control and pLV-puro groups (p < .01), and the findings of real-time fluorescence-based quantitative PCR showed high expression of osteogenic-related genes in pLV-BMP2 group (p < .01). CONCLUSION: In conclusion, a stable periodontal ligament cell line overexpressing BMP2 was successfully established by a lentivirus-mediated method, which proved that BMP2 has a strong ability to promote the proliferation and osteogenesis of hPDLCs, thereby providing an opportunity for the study of periodontal tissue regeneration as well as providing an experimental basis for the application of autologous teeth as a new type of bone repair material for periodontal therapy and even for maxillofacial bone tissue repair.


Osteogenesis , Periodontal Ligament , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Bone Morphogenetic Protein 2/pharmacology , Cell Differentiation , Cells, Cultured , Humans , Lentivirus/genetics , Lentivirus/metabolism , Osteogenesis/genetics , Sincalide/metabolism , Sincalide/pharmacology
13.
Environ Res ; 212(Pt C): 113428, 2022 09.
Article En | MEDLINE | ID: mdl-35568232

Respiratory infectious diseases (e.g., COVID-19) have brought huge damages to human society, and the accurate prediction of their transmission trends is essential for both the health system and policymakers. Most related studies focus on epidemic trend forecasting at the macroscopic level, which ignores the microscopic social interactions among individuals. Meanwhile, current microscopic models are still not able to sufficiently decipher the individual-based spreading process and lack valid quantitative tests. To tackle these problems, we propose an exposure-risk-based model at the microscopic level, including 4 modules: individual movement, virion-laden droplet movement, individual exposure risk estimation, and prediction of transmission trends. Firstly, the front two modules reproduce the movements of individuals and the droplets of infectors' expiratory activities, respectively. Then, the outputs are fed to the third module to estimate the personal exposure risk. Finally, the number of new cases is predicted in the final module. By predicting the new COVID- 19 cases in the United States, the performances of our model and 4 other existing macroscopic or microscopic models are compared. Specifically, the mean absolute error, root mean square error, and mean absolute percentage error provided by the proposed model are respectively 2454.70, 3170.51, and 3.38% smaller than the minimum results of comparison models. The quantitative results reveal that our model can accurately predict the transmission trends from a microscopic perspective, and it can benefit the further investigation of many microscopic disease transmission factors (e.g., non-walkable areas and facility layouts).


Communicable Diseases , Epidemics , Forecasting , Respiratory Tract Infections , COVID-19/epidemiology , Communicable Diseases/epidemiology , Humans , Models, Theoretical , Respiratory Tract Infections/epidemiology , Risk Assessment
14.
Materials (Basel) ; 14(9)2021 Apr 22.
Article En | MEDLINE | ID: mdl-33922126

Ni-based filler metal and Ni-Cu-based filler metal were used to obtain copper/stainless steel (Cu/SS) joints through wire-feeding laser welding. Along the SS/weld interface, there exist different grain sizes (from coarse columnar grains to fine equiaxed grains). The heat affected zone (HAZ) on the copper side consisted of two areas with different grain sizes and the size of the grain in the Cu-HAZ of the Ni-Cu-based filled joint was much smaller than that of the Ni-based filled joint. Our results showed that grain refinement at the copper/weld (Cu/weld) interface of the Ni-Cu-based filled joint was observed through high-resolution electron backscattered diffraction (EBSD). There was a hardness elevation at the Cu/weld interface of the Ni-Cu-based filled joint due to the grain refinement on the weld of the copper side. The maximum tensile strength of the Ni-Cu-based filled joint was obtained and reached 91.2% of the tensile strength of the copper base metal (Cu-BM). Joints in this study were observed to fracture in a ductile mode. Furthermore, the Ni-Cu-based filled joint exhibited a higher plastic deformation, which was primarily caused by the large deformation of the weld zone and the large deformation of the Cu-BM due to the high plasticity of the weld, which alleviated the stress concentration, as indicated by 2D-digital image correlation (DIC) test results.

15.
Phys Rev Lett ; 125(16): 160502, 2020 Oct 16.
Article En | MEDLINE | ID: mdl-33124854

In the age of the post-Moore era, the next-generation computing model would be a hybrid architecture consisting of different physical components, such as photonic chips. In 2008, it was proposed that the solving of the NAND-tree problem can be sped up by quantum walk. This scheme is groundbreaking due to the universality of the NAND gate. However, experimental demonstration has not been achieved so far, mostly due to the challenge in preparing the propagating initial state. Here we propose an alternative solution by including a structure called a "quantum slide," where a propagating Gaussian wave packet can be generated deterministically along a properly engineered chain. In our experimental demonstration, the optical NAND tree is capable of solving computational problems with a total of four input bits, based on the femtosecond laser 3D direct-writing technique on a photonic chip. These results remove one main roadblock to photonic NAND-tree computation, and the construction of a quantum slide may find other interesting applications in quantum information and quantum optics.

16.
Mol Biol Rep ; 47(7): 5469-5475, 2020 Jul.
Article En | MEDLINE | ID: mdl-32632779

During the transition from human oral mucosal epithelial cells (HOMEC) to oral squamous cell carcinoma cells (Cal27), the cells must have undergone a precancerous state. To explore the malignant rule of HOMEC, plv-HOMEC was used as a model cell for the precancerous state to investigate plv-HOMEC's apoptosis by comparing human oral mucosal epithelial cells established by Lentivirus-mediated hTERT (plv-HOMEC) with HOMEC and human Cal27. The lentiviral particles overexpressing hTERT were packaged and transfected into primary HOMEC to obtain plv-HOMEC. Expression levels of NF-κB were detected in the cytoplasm and nucleus of Cal27, plv-HOMEC and HOMEC. The level of intracellular reactive oxygen species was measured to verify the endoplasmic reticulum pathway, cytochrome C expression was detected to verify the mitochondrial pathway, and FasL gene expression was detected to verify the death receptor apoptosis pathway. The total expression of NF-κB in plv-HOMEC increased, mainly due to the greater nuclear import of NF-κB, but it was still much lower than Cal27. The endoplasmic reticulum apoptosis pathway of plv-HOMEC was not significantly affected, and there were no significant differences between them and the HOMEC cells; the mitochondrial apoptosis pathway of plv-HOMEC was inhibited, and the expression of Cyt C was very close to that of Cal27, indicating that the characteristics of plv-HOMEC are so familiar with cancer cells; the death receptor apoptosis pathway of plv-HOMEC was also inhibited, and in this apoptotic pathway, plv-HOMEC were more similar to cancer cells than to HOMEC cells. The present data suggest that NF-κB nucleation may increase in the early stage of healthy cells' carcinogenesis, followed by inhibition of the mitochondrial pathway and the death receptor apoptotic pathway.


Epithelial Cells/metabolism , Mouth Mucosa/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Apoptosis/physiology , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation , Cytochromes c/metabolism , Humans , Lentivirus , Mitochondria/metabolism , Mouth Neoplasms/pathology , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/metabolism , Telomerase/genetics , Telomerase/metabolism , Transcription Factor RelA/metabolism
17.
Naunyn Schmiedebergs Arch Pharmacol ; 393(11): 2221-2229, 2020 11.
Article En | MEDLINE | ID: mdl-32076762

Schisandrin A (Sch A) is a lignin extracted from the fruit of Schisandra chinensis, which has potential anti-inflammatory properties and is used for treating various inflammatory diseases. In this study, we aimed to evaluate the anti-inflammatory effects of Sch A and the underlying mechanisms in animal models of acute inflammation. First, the anti-inflammatory effects of Sch A were evaluated preliminarily in an animal model of xylene-induced ear edema. Sch A pretreatment significantly decreased the degree of edema and inhibited telangiectasia in the ear. Second, a mouse model of paw edema was used to investigate the anti-inflammatory effects and mechanisms of Sch A. Pretreatment with Sch A significantly inhibited carrageenan-induced paw edema in mice. Hematoxylin-eosin (HE) staining of paw tissues demonstrated that Sch A inhibited the infiltration of inflammatory cells in the mouse model of paw edema. Enzyme-linked immunosorbent assay (ELISA) results indicated that the levels of inflammatory factors decreased. The western blot and immunohistochemical assay results revealed that the toll-like receptor 4/nuclear factor kappa-B (TLR4/NF-κB) pathway could play a role in the anti-inflammatory functions of Sch A. The findings demonstrated that Sch A exerts anti-inflammatory effects and may provide possible strategies for the treatment of inflammatory diseases.


Anti-Inflammatory Agents/pharmacology , Cyclooctanes/pharmacology , Edema/prevention & control , Inflammation/prevention & control , Lignans/pharmacology , Polycyclic Compounds/pharmacology , Animals , Carrageenan , Disease Models, Animal , Edema/chemically induced , Edema/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Inflammation Mediators/metabolism , Male , Mice , NF-kappa B/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Xylenes
18.
Biosci Trends ; 9(2): 122-8, 2015 Apr.
Article En | MEDLINE | ID: mdl-26173295

There is an increasing recognition that beneficial effects of adipose-derived stem cell (ADSC) therapy may depend largely on the secretion of multiple growth factors. This study modified ADSCs with the Bcl-2 gene in order to increase the secretion of growth factors during oxygen-glucose deprivation (OGD). The phenotypes of human ADSCs that were passaged 4 times were analyzed using flow cytometry. Then, ADSCs were genetically modified with Bcl-2 and Bcl-2 gene transduction was verified with Western blotting. Proliferative capacity and multipotent differentiation properties were evaluated in Bcl-2-modified ADSCs. Secretion of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and basic fibroblast growth factor (bFGF) was evaluated using an enzyme-linked immunosorbent assay (ELISA) during OGD. Human ADSCs that were passaged 4 times expressed stem cell-associated markers but not a fibroblast marker or a hematopoietic stem cell marker. The Bcl-2 gene was efficiently transfected into ADSCs; Bcl-2 modification did not affect the proliferative and multilineage differentiation capacity of ADSCs. In addition, Bcl-2 overexpression enhanced the secretion of VEGF, bFGF, and HGF by 14.47%, 16.9%, and 91%, respectively, compared to ADSCs alone that were deprived of oxygen and glucose. These data suggest that Bcl-2 overexpression enhances secretion of angiogenic growth factors by ADSCs deprived of oxygen and glucose.


Adipose Tissue/cytology , Glucose/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Oxygen/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Stem Cells/metabolism , Up-Regulation , Adenoviridae/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Female , Genetic Vectors/metabolism , Humans , Immunophenotyping , Multipotent Stem Cells/cytology , Multipotent Stem Cells/drug effects , Multipotent Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/drug effects , Transduction, Genetic , Up-Regulation/drug effects
19.
Burns ; 41(2): 372-8, 2015 Mar.
Article En | MEDLINE | ID: mdl-25440843

AIM: Glycyrrhizin (Gly) has been reported as an inhibitor of extracellular HMGB1 (high-mobility group box 1 protein) cytokine's activity, and protects spinal cord, liver, heart and brain against ischemia-reperfusion-induced injury in rats. The purpose of this study was to investigate the protective effect of Gly in rat skin thermal injury model and to elucidate the underlying mechanisms. METHODS: Twenty-four male Sprague-Dawley rats (200-250g) were randomly divided into control group, vehicle-treated and Gly-treated burn groups, each group contained eight animals. In the latter two groups, rats were subjected to 30% TBSA (Total Body Surface Area) full-thickness scald injury. In Gly-treated burn group, glycyrrhizin (60mg/kg) was administered intraperitoneally immediately after and at 24th hour burn; in vehicle-treated burn group, Ringer's solution (4ml/kg, as a vehicle) was administered intraperitoneally immediately after and at 24th hour burn. The animals were sacrificed at 48h after injury. Aortic blood samples were obtained to detect tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) with ELISA (Enzyme-Linked Immuno Sorbent Assay) kits. Lung, liver and kidney tissue samples were collected to determine the expression of HMGB1 mRNA and protein. HMGB1 mRNA level was semiquantitatively measured by Real-Time PCR using ß-actin as an internal standard, and protein expression of HMGBI was determined by Western blot. RESULTS: Severe skin scald injury caused a significant increase in plasma TNF-α and IL-1ß versus the control group (P<0.001) in 48h after burns. Intraperitoneal administration of Gly (60mg/kg) significantly reduced the levels of serum TNF-α and IL-1ß (P<0.01). Gly treatment reduced these biochemical indices accompanied by lower level of HMGB1 protein (P<0.05) and mRNA expression (P<0.01). CONCLUSION: These results demonstrate that Gly possesses an anti-inflammation effect to protect the remote organs from burn-induced injury.


Anti-Inflammatory Agents/pharmacology , Burns/drug therapy , Glycyrrhizic Acid/pharmacology , HMGB1 Protein/antagonists & inhibitors , Actins/metabolism , Animals , Blotting, Western , Burns/metabolism , Disease Models, Animal , HMGB1 Protein/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Injections, Intraperitoneal , Interleukin-1beta/blood , Kidney/metabolism , Liver/metabolism , Lung/metabolism , Male , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/blood
20.
Mol Med Rep ; 10(3): 1642-8, 2014 Sep.
Article En | MEDLINE | ID: mdl-24993706

Cartilage defect caused by disease or trauma remains a challenge for surgeons, owning to the limited healing capacity of cartilage tissues. Cartilage tissue engineering provides a novel approach to address this issue, and appears promising for patients with cartilage defects. The cell scaffold, as one of the three key elements of tissue engineering, plays an important role in cartilage tissue engineering. Platelet­rich plasma (PRP), which is a fraction of the plasma containing multiple growth factors, has become a major research focus in the context of its use as a bioactive scaffold for tissue engineering. Therefore, we investigated the value of using PRP scaffolds combined with chondrocytes in cartilage tissue engineering. In this study, we examined the levels of growth factors in PRP, and the effects of PRP on cell proliferation and matrix synthesis in rabbit chondrocytes cultured in PRP. Short-term in vitro culture followed by long­term in vivo implantation was performed to evaluate the chondrogenesis of neocartilage in vivo. The results show that PRP may provide a suitable environment for the proliferation and maturation of chondrocytes, and can be used as a promising bioactive scaffold for cartilage regeneration.


Cartilage, Articular/metabolism , Platelet-Rich Plasma , Regeneration , Animals , Cell Proliferation , Cells, Cultured , Chondrocytes/metabolism , Chondrogenesis , Microscopy, Electron, Scanning , Rabbits , Tissue Engineering/methods , Tissue Scaffolds
...