Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 79
1.
Res Sq ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38766032

Prostate cancer (PCa) is the most common cancer diagnosed in men worldwide and the second leading cause of cancer-related deaths in US males in 2022. Prostate cancer also represents the second highest cancer mortality disparity between non-Hispanic blacks and whites. However, there is a relatively small number of prostate normal and cancer cell lines compared to other cancers. To identify the molecular basis of PCa progression, it is important to have prostate epithelial cell (PrEC) lines as karyotypically normal as possible. Our lab recently developed a novel methodology for the rapid and efficient immortalization of normal human PrEC that combines simultaneous CRISPR-directed inactivation of CDKN2A exon 2 (which directs expression of p16INK4A and p14ARF) and ectopic expression of an hTERT transgene. To optimize this methodology to generate immortalized lines with minimal genetic alterations, we sought to target exon 1α of the CDKN2A locus so that p16INK4A expression is ablated while p14ARF expression remains unaltered. Here we describe the establishment of two cell lines: one with the above-mentioned p16INK4A only loss, and a second line targeting both products in the CDKN2A locus. We characterize the potential lineage origin of these new cell lines along with our previously obtained clones, revealing distinct gene expression signatures. Based on the analyses of protein markers and RNA expression signatures, these cell lines are most closely related to a subpopulation of basal prostatic cells. Given the simplicity of this one-step methodology and the fact that it uses only the minimal genetic alterations necessary for immortalization, it should also be suitable for the establishment of cell lines from primary prostate tumor samples, an urgent need given the limited number of available prostate cancer cell lines.

2.
bioRxiv ; 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38293200

Pancreatic cancer is becoming increasingly deadly, with treatment options limited due to, among others, the complex tumor microenvironment (TME). This short communications study investigates pulsed low-dose-rate radiation (PLDR) as a potential alternative to conventional radiotherapy for pancreatic cancer neoadjuvant treatment. Our ex vivo research demonstrates that PLDR, in combination with chemotherapy, promotes a shift from tumor-promoting to tumor-suppressing properties in a key component of the pancreatic cancer microenvironment we called CAFu (cancer-associated fibroblasts and selfgenerated extracellular matrix functional units). This beneficial effect translates to reduced desmoplasia (fibrous tumor expansion) and suggests PLDR's potential to improve total neoadjuvant therapy effectiveness. To comprehensively assess this functional shift, we developed the HOST-Factor, a single score integrating multiple biomarkers. This tool provides a more accurate picture of CAFu function compared to individual biomarkers and could be valuable for guiding and monitoring future therapeutic strategies. Our findings support the ongoing NCT04452357 clinical trial testing PLDR safety and TME normalization potential in pancreatic cancer patients. The HOST-Factor will be used in samples collected from this trial to validate its potential as a key tool for personalized medicine in this aggressive disease.

3.
BME Front ; 4: 0006, 2023.
Article En | MEDLINE | ID: mdl-37849664

We need novel strategies to target the complexity of cancer and, particularly, of metastatic disease. As an example of this complexity, certain tissues are particularly hospitable environments for metastases, whereas others do not contain fertile microenvironments to support cancer cell growth. Continuing evidence that the extracellular matrix (ECM) of tissues is one of a host of factors necessary to support cancer cell growth at both primary and secondary tissue sites is emerging. Research on cancer metastasis has largely been focused on the molecular adaptations of tumor cells in various cytokine and growth factor environments on 2-dimensional tissue culture polystyrene plates. Intravital imaging, conversely, has transformed our ability to watch, in real time, tumor cell invasion, intravasation, extravasation, and growth. Because the interstitial ECM that supports all cells in the tumor microenvironment changes over time scales outside the possible window of typical intravital imaging, bioengineers are continuously developing both simple and sophisticated in vitro controlled environments to study tumor (and other) cell interactions with this matrix. In this perspective, we focus on the cellular unit responsible for upholding the pathologic homeostasis of tumor-bearing organs, cancer-associated fibroblasts (CAFs), and their self-generated ECM. The latter, together with tumoral and other cell secreted factors, constitute the "tumor matrisome". We share the challenges and opportunities for modeling this dynamic CAF/ECM unit, the tools and techniques available, and how the tumor matrisome is remodeled (e.g., via ECM proteases). We posit that increasing information on tumor matrisome dynamics may lead the field to alternative strategies for personalized medicine outside genomics.

4.
bioRxiv ; 2023 Sep 17.
Article En | MEDLINE | ID: mdl-37745612

In pancreatic ductal adenocarcinoma (PDAC), the fibroblastic stroma constitutes most of the tumor mass and is remarkably devoid of functional blood vessels. This raises an unresolved question of how PDAC cells obtain essential metabolites and water-insoluble lipids. We have found a critical role for cancer-associated fibroblasts (CAFs) in obtaining and transferring lipids from blood-borne particles to PDAC cells via trogocytosis of CAF plasma membranes. We have also determined that CAF-expressed phospholipid scramblase anoctamin 6 (ANO6) is an essential CAF trogocytosis regulator required to promote PDAC cell survival. During trogocytosis, cancer cells and CAFs form synapse-like plasma membranes contacts that induce cytosolic calcium influx in CAFs via Orai channels. This influx activates ANO6 and results in phosphatidylserine exposure on CAF plasma membrane initiating trogocytosis and transfer of membrane lipids, including cholesterol, to PDAC cells. Importantly, ANO6-dependent trogocytosis also supports the immunosuppressive function of pancreatic CAFs towards cytotoxic T cells by promoting transfer of excessive amounts of cholesterol. Further, blockade of ANO6 antagonizes tumor growth via disruption of delivery of exogenous cholesterol to cancer cells and reverses immune suppression suggesting a potential new strategy for PDAC therapy.

5.
Clin Cancer Res ; 29(18): 3793-3812, 2023 09 15.
Article En | MEDLINE | ID: mdl-37587561

PURPOSE: This research investigates the association between benzodiazepines (BZD) and cancer patient survival outcomes, the pancreatic cancer tumor microenvironment, and cancer-associated fibroblast (CAF) signaling. EXPERIMENTAL DESIGN: Multivariate Cox regression modeling was used to retrospectively measure associations between Roswell Park cancer patient survival outcomes and BZD prescription records. IHC, H&E, Masson's trichrome, RNAscope, and RNA sequencing were used to evaluate the impact of lorazepam (LOR) on the murine PDAC tumor microenvironment. ELISA and qPCR were used to determine the impact of BZDs on IL6 expression or secretion by human-immortalized pancreatic CAFs. PRESTO-Tango assays, reanalysis of PDAC single-cell sequencing/TCGA data sets, and GPR68 CRISPRi knockdown CAFs were used to determine the impact of BZDs on GPR68 signaling. RESULTS: LOR is associated with worse progression-free survival (PFS), whereas alprazolam (ALP) is associated with improved PFS, in pancreatic cancer patients receiving chemotherapy. LOR promotes desmoplasia (fibrosis and extracellular matrix protein deposition), inflammatory signaling, and ischemic necrosis. GPR68 is preferentially expressed on human PDAC CAFs, and n-unsubstituted BZDs, such as LOR, significantly increase IL6 expression and secretion in CAFs in a pH and GPR68-dependent manner. Conversely, ALP and other GPR68 n-substituted BZDs decrease IL6 in human CAFs in a pH and GPR68-independent manner. Across many cancer types, LOR is associated with worse survival outcomes relative to ALP and patients not receiving BZDs. CONCLUSIONS: We demonstrate that LOR stimulates fibrosis and inflammatory signaling, promotes desmoplasia and ischemic necrosis, and is associated with decreased pancreatic cancer patient survival.


Lorazepam , Pancreatic Neoplasms , Humans , Animals , Mice , Interleukin-6/genetics , Retrospective Studies , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Benzodiazepines , Fibrosis , Necrosis , Tumor Microenvironment , Receptors, G-Protein-Coupled , Pancreatic Neoplasms
6.
Nat Commun ; 14(1): 4513, 2023 07 27.
Article En | MEDLINE | ID: mdl-37500647

This phase I, dose-escalation trial evaluates the safety of combining interferon-gamma (IFN-γ) and nivolumab in patients with metastatic solid tumors. Twenty-six patients are treated in four cohorts assessing increasing doses of IFN-γ with nivolumab to evaluate the primary endpoint of safety and determine the recommended phase two dose (RP2D). Most common adverse events are low grade and associated with IFN-γ. Three dose limiting toxicities are reported at the highest dose cohorts. We report only one patient with any immune related adverse event (irAE). No irAEs ≥ grade 3 are observed and no patients require corticosteroids. The maximum tolerated dose of IFN-γ is 75 mcg/m2, however based on a composite of safety, clinical, and correlative factors the RP2D is 50 mcg/m2. Exploratory analyses of efficacy in the phase I cohorts demonstrate one patient with a complete response, and five have achieved stable disease. Pre-planned correlative assessments of circulating immune cells demonstrate intermediate monocytes with increased PD-L1 expression correlating with IFN-γ dose and treatment duration. Interestingly, post-hoc analysis shows that IFN-γ induction increases circulating chemokines and is associated with an observed paucity of irAEs, warranting further evaluation. ClinicalTrials.gov Trial Registration: NCT02614456.


Neoplasms , Nivolumab , Humans , Nivolumab/therapeutic use , Interferon-gamma , Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects
7.
Res Sq ; 2023 Apr 12.
Article En | MEDLINE | ID: mdl-37090621

Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and in silico experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in noninvasive and invasive breast cancer cell lines. In human TNBC biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in noninvasive compared to invasive regions. Similarly, in silico analyses of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective modality to limit recurrence in breast cancer patients.

8.
Cell Syst ; 14(4): 252-257, 2023 04 19.
Article En | MEDLINE | ID: mdl-37080161

Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.


Mass Behavior , Neoplasms , Humans , Communication
9.
Mol Cancer Res ; 21(3): 228-239, 2023 03 01.
Article En | MEDLINE | ID: mdl-36378658

Cholesterol dependence is an essential characteristic of pancreatic ductal adenocarcinoma (PDAC). Cholesterol 25-hydroxylase (CH25H) catalyzes monooxygenation of cholesterol into 25-hydroxycholesterol, which is implicated in inhibiting cholesterol biosynthesis and in cholesterol depletion. Here, we show that, within PDAC cells, accumulation of cholesterol was facilitated by the loss of CH25H. Methylation of the CH25H gene and decreased levels of CH25H expression occurred in human pancreatic cancers and was associated with poor prognosis. Knockout of Ch25h in mice accelerated progression of Kras-driven pancreatic intraepithelial neoplasia. Conversely, restoration of CH25H expression in human and mouse PDAC cells decreased their viability under conditions of cholesterol deficit, and decelerated tumor growth in immune competent hosts. Mechanistically, the loss of CH25H promoted autophagy resulting in downregulation of MHC-I and decreased CD8+ T-cell tumor infiltration. Re-expression of CH25H in PDAC cells combined with immune checkpoint inhibitors notably inhibited tumor growth. We discuss additional benefits that PDAC cells might gain from inactivation of CH25H and the potential translational importance of these findings for therapeutic approaches to PDAC. IMPLICATIONS: Loss of CH25H by pancreatic cancer cells may stimulate tumor progression and interfere with immunotherapies.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Steroid Hydroxylases , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/pathology , Mice, Knockout , Pancreatic Neoplasms/pathology , Steroid Hydroxylases/metabolism , Pancreatic Neoplasms
10.
Cancer Res Commun ; 2(11): 1471-1486, 2022 11.
Article En | MEDLINE | ID: mdl-36530465

Extracellular matrix alignment contributes to metastasis in a number of cancers and is a known prognostic stromal factor; however, the mechanisms controlling matrix organization remain unclear. Cancer-associated fibroblasts (CAF) play a critical role in this process, particularly via matrix production and modulation of key signaling pathways controlling cell adhesion and contractility. Stroma normalization, as opposed to elimination, is a highly sought strategy, and screening for drugs that effectively alter extracellular matrix (ECM) alignment is a practical way to identify novel CAF-normalizing targets that modulate ECM organization. To meet this need, we developed a novel high-throughput screening platform in which fibroblast-derived matrices were produced in 384-well plates, imaged with automated confocal microscopy, and analyzed using a customized MATLAB script. This platform is a technical advance because it miniaturizes the assay, eliminates costly and time-consuming experimental steps, and streamlines data acquisition and analysis to enable high-throughput screening applications. As a proof of concept, this platform was used to screen a kinase inhibitor library to identify modulators of matrix alignment. A number of novel potential regulators were identified, including several receptor tyrosine kinases (c-MET, tropomyosin receptor kinase 1 (NTRK1), HER2/ERBB2) and the serine/threonine kinases protein kinase A, C, and G (PKA, PKC, and PKG). The expression of these regulators was analyzed in publicly available patient datasets to examine the association between stromal gene expression and patient outcomes.


Extracellular Matrix , Signal Transduction , Humans , Cell Movement , Cell Line, Tumor , Extracellular Matrix/genetics , Fibroblasts , Cytoskeletal Proteins/metabolism
11.
BMC Cancer ; 22(1): 1255, 2022 Dec 02.
Article En | MEDLINE | ID: mdl-36461015

BACKGROUND: Less than 11% of pancreatic cancer patients survive 5-years post-diagnosis. The unique biology of pancreatic cancer includes a significant expansion of its desmoplastic tumor microenvironment, wherein cancer-associated fibroblasts (CAFs) and their self-produced extracellular matrix are key components. CAF functions are both tumor-supportive and tumor-suppressive, while normal fibroblastic cells are solely tumor-suppressive. Knowing that CAF-eliminating drugs are ineffective and can accelerate cancer progression, therapies that "normalize" CAF function are highly pursued. Eribulin is a well-tolerated anti-microtubule drug used to treat a plethora of neoplasias, including advanced/metastatic cancers. Importantly, eribulin can inhibit epithelial to mesenchymal transition via a mechanism akin to blocking pathways induced by transforming growth factor-beta (TGFß). Notably, canonical TGFß signaling also plays a pivotal role in CAF activation, which is necessary for the development and maintenance of desmoplasia. Hence, we hypothesized that eribulin could modulate, and perhaps "normalize" CAF function. METHODS: To test this premise, we used a well-established in vivo-mimetic fibroblastic cell-derived extracellular matrix (CDM) system and gauged the effects of eribulin on human pancreatic CAFs and cancer cells. This pathophysiologic fibroblast/matrix functional unit was also used to query eribulin effects on CDM-regulated pancreatic cancer cell survival and invasive spread. RESULTS: Demonstrated that intact CAF CDMs modestly restricted eribulin from obstructing pancreatic cancer cell growth. Nonetheless, eribulin-treated CAFs generated CDMs that limited nutrient-deprived pancreatic cancer cell survival, similar to reported tumor-suppressive CDMs generated by TGFß-deficient CAFs. CONCLUSIONS: Data from this study support the central proposed premise suggesting that eribulin could be used as a CAF/matrix-normalizing drug.


Cancer-Associated Fibroblasts , Pancreatic Neoplasms , Humans , Transforming Growth Factor beta , Epithelial-Mesenchymal Transition , Pancreatic Neoplasms/drug therapy , Calmodulin-Binding Proteins , Tumor Microenvironment , Pancreatic Neoplasms
12.
Cancer Res Commun ; 2(9): 1017-1036, 2022 09.
Article En | MEDLINE | ID: mdl-36310768

It is projected that in 5 years, pancreatic cancer will become the second deadliest cancer in the United States. A unique aspect of pancreatic ductal adenocarcinoma (PDAC) is its stroma; rich in cancer-associated fibroblasts (CAFs) and a dense CAF-generated extracellular matrix (ECM). These pathogenic stroma CAF/ECM units cause the collapse of local blood vessels rendering the tumor microenvironment nutrient-poor. PDAC cells are able to survive this state of nutrient stress via support from CAF-secreted material, which includes small extracellular vesicles (sEVs). The tumor-supportive CAFs possess a distinct phenotypic profile, compared to normal-like fibroblasts, expressing NetrinG1 (NetG1) at the plasma membrane, and active Integrin α5ß1 localized to the multivesicular bodies; traits indicative of poor patient survival. We herein report that NetG1+ CAFs secrete sEVs that stimulate Akt-mediated survival in nutrient-deprived PDAC cells, protecting them from undergoing apoptosis. Further, we show that NetG1 expression in CAFs is required for the pro-survival properties of sEVs. Additionally, we report that the above-mentioned CAF markers are secreted in distinct subpopulations of EVs; with NetG1 being enriched in exomeres, and Integrin α5ß1 being enriched in exosomes. Finally, we found that NetG1 and Integrin α5ß1 were detected in sEVs collected from plasma of PDAC patients, while their levels were significantly lower in plasma-derived sEVs of sex/age-matched healthy donors. The discovery of these tumor-supporting CAF-EVs elucidates novel avenues in tumor-stroma interactions and pathogenic stroma detection.


Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Extracellular Vesicles , Pancreatic Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Integrin alpha5beta1/metabolism , Extracellular Vesicles/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
13.
Adv Cancer Res ; 154: 141-168, 2022.
Article En | MEDLINE | ID: mdl-35459467

As part of the connective tissue, activated fibroblasts play an important role in development and disease pathogenesis, while quiescent resident fibroblasts are responsible for sustaining tissue homeostasis. Fibroblastic activation is particularly evident in the tumor microenvironment where fibroblasts transition into tumor-supporting cancer-associated fibroblasts (CAFs), with some CAFs maintaining tumor-suppressive functions. While the tumor-supporting features of CAFs and their fibroblast-like precursors predominantly function through paracrine chemical communication (e.g., secretion of cytokine, chemokine, and more), the direct cell-cell communication that occurs between fibroblasts and other cells, and the effect that the remodeled CAF-generated interstitial extracellular matrix has in these types of cellular communications, remain poorly understood. Here, we explore the reported roles fibroblastic cell-cell communication play within the cancer stroma context and highlight insights we can gain from other disciplines.


Cancer-Associated Fibroblasts , Neoplasms , Cancer-Associated Fibroblasts/pathology , Cell Communication , Communication , Fibroblasts/pathology , Humans , Neoplasms/pathology , Tumor Microenvironment
14.
Nat Commun ; 13(1): 1381, 2022 03 16.
Article En | MEDLINE | ID: mdl-35296667

Cellular plasticity contributes to intra-tumoral heterogeneity and phenotype switching, which enable adaptation to metastatic microenvironments and resistance to therapies. Mechanisms underlying tumor cell plasticity remain poorly understood. SOX10, a neural crest lineage transcription factor, is heterogeneously expressed in melanomas. Loss of SOX10 reduces proliferation, leads to invasive properties, including the expression of mesenchymal genes and extracellular matrix, and promotes tolerance to BRAF and/or MEK inhibitors. We identify the class of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) inhibitors as inducing cell death selectively in SOX10-deficient cells. Targeted therapy selects for SOX10 knockout cells underscoring their drug tolerant properties. Combining cIAP1/2 inhibitor with BRAF/MEK inhibitors delays the onset of acquired resistance in melanomas in vivo. These data suggest that SOX10 mediates phenotypic switching in cutaneous melanoma to produce a targeted inhibitor tolerant state that is likely a prelude to the acquisition of resistance. Furthermore, we provide a therapeutic strategy to selectively eliminate SOX10-deficient cells.


Melanoma , Skin Neoplasms , Cell Line, Tumor , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Phenotype , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Tumor Microenvironment
15.
Cancer Discov ; 12(2): 296-298, 2022 02.
Article En | MEDLINE | ID: mdl-35140177

Cancer-associated fibroblast (CAF) pro- and anti-pancreatic cancer functional dichotomy has been at the center of numerous studies. In this issue of Cancer Discovery, Helms and colleagues demonstrate that although pancreatic stellate cell-derived CAFs constitute a desmoplastic cell minority, these cells play a protumorigenic role via microenvironmental mechanomodulation.See related article by Helms et al., p. 484.


Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Stellate Cells
16.
Cancer Res ; 81(18): 4668-4670, 2021 09 15.
Article En | MEDLINE | ID: mdl-34526348

Today's view of cancer as a systemic disease was facilitated by studies accentuating the local as well as the systemic role that non-tumorigenic cells, such as carcinoma-associated fibroblasts, play in cancer onset, development, and progression. The study highlighted in this Cancer Research Landmark was instrumental for supporting the idea that cancer is a full-body disease that depends on reciprocal interactions between cancer cells and the tumor microenvironment. Fibroblasts are mesenchymal cells of the connective tissue and are responsible for maintaining tissue homeostasis. Importantly, contractile myofibroblastic activation and immunoregulatory fibroblastic nemosis (the process of mesenchymal cell activation, followed by death, associated with release of proinflammatory molecules) constitute two functional aspects of fibroblasts that are essential for organogenesis as well as for modulating wound healing. Yet, in epithelial cancers, fibroblastic cell functions are chronically misregulated. The study by Olumi and colleagues published in Cancer Research in 1999 exemplifies how normal fibroblasts play a tumor-suppressive role and how modulating fibroblastic activity provides carcinoma-associated fibroblasts with tumor-promoting functions, similar to the needed "second hit" in a tumor suppressor gene. The emphasis on tumor/fibroblast interactions has provided a new framework for thinking about tumorigenesis as well as new targets for therapeutic intervention.See related article by Olumi and colleagues, Cancer Res 1999;59:5002-11.


Cancer-Associated Fibroblasts , Neoplasms , Carcinogenesis , Fibroblasts , Humans , Neoplasms/genetics , Tumor Microenvironment
17.
Cancer Discov ; 11(2): 446-479, 2021 02.
Article En | MEDLINE | ID: mdl-33127842

Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year survival rate and lacks effective therapeutics. Therefore, it is of paramount importance to identify new targets. Using multiplex data from patient tissue, three-dimensional coculturing in vitro assays, and orthotopic murine models, we identified Netrin G1 (NetG1) as a promoter of PDAC tumorigenesis. We found that NetG1+ cancer-associated fibroblasts (CAF) support PDAC survival, through a NetG1-mediated effect on glutamate/glutamine metabolism. Also, NetG1+ CAFs are intrinsically immunosuppressive and inhibit natural killer cell-mediated killing of tumor cells. These protumor functions are controlled by a signaling circuit downstream of NetG1, which is comprised of AKT/4E-BP1, p38/FRA1, vesicular glutamate transporter 1, and glutamine synthetase. Finally, blocking NetG1 with a neutralizing antibody stunts in vivo tumorigenesis, suggesting NetG1 as potential target in PDAC. SIGNIFICANCE: This study demonstrates the feasibility of targeting a fibroblastic protein, NetG1, which can limit PDAC tumorigenesis in vivo by reverting the protumorigenic properties of CAFs. Moreover, inhibition of metabolic proteins in CAFs altered their immunosuppressive capacity, linking metabolism with immunomodulatory function.See related commentary by Sherman, p. 230.This article is highlighted in the In This Issue feature, p. 211.


Adenocarcinoma/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Netrins/metabolism , Pancreatic Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Humans , Immunosuppression Therapy , Nutritional Support , Tumor Microenvironment
18.
Oncotarget ; 11(40): 3621-3632, 2020 Oct 06.
Article En | MEDLINE | ID: mdl-33088423

Significant advances have been made towards understanding the role of immune cell-tumor interplay in either suppressing or promoting tumor growth, progression, and recurrence, however, the roles of additional stromal elements, cell types and/or cell states remain ill-defined. The overarching goal of this NCI-sponsored workshop was to highlight and integrate the critical functions of non-immune stromal components in regulating tumor heterogeneity and its impact on tumor initiation, progression, and resistance to therapy. The workshop explored the opposing roles of tumor supportive versus suppressive stroma and how cellular composition and function may be altered during disease progression. It also highlighted microenvironment-centered mechanisms dictating indolence or aggressiveness of early lesions and how spatial geography impacts stromal attributes and function. The prognostic and therapeutic implications as well as potential vulnerabilities within the heterogeneous tumor microenvironment were also discussed. These broad topics were included in this workshop as an effort to identify current challenges and knowledge gaps in the field.

19.
Cancer Cell ; 38(4): 567-583.e11, 2020 10 12.
Article En | MEDLINE | ID: mdl-32976774

Oncogenic transformation alters lipid metabolism to sustain tumor growth. We define a mechanism by which cholesterol metabolism controls the development and differentiation of pancreatic ductal adenocarcinoma (PDAC). Disruption of distal cholesterol biosynthesis by conditional inactivation of the rate-limiting enzyme Nsdhl or treatment with cholesterol-lowering statins switches glandular pancreatic carcinomas to a basal (mesenchymal) phenotype in mouse models driven by KrasG12D expression and homozygous Trp53 loss. Consistently, PDACs in patients receiving statins show enhanced mesenchymal features. Mechanistically, statins and NSDHL loss induce SREBP1 activation, which promotes the expression of Tgfb1, enabling epithelial-mesenchymal transition. Evidence from patient samples in this study suggests that activation of transforming growth factor ß signaling and epithelial-mesenchymal transition by cholesterol-lowering statins may promote the basal type of PDAC, conferring poor outcomes in patients.


Biosynthetic Pathways/genetics , Carcinoma, Pancreatic Ductal/genetics , Cholesterol, LDL/biosynthesis , Pancreatic Neoplasms/genetics , Transforming Growth Factor beta/genetics , 3-Hydroxysteroid Dehydrogenases/genetics , 3-Hydroxysteroid Dehydrogenases/metabolism , Animals , Atorvastatin/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Kaplan-Meier Estimate , Mice, Inbred C57BL , Mice, Knockout , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Signal Transduction/genetics , Transforming Growth Factor beta/metabolism , Xenograft Model Antitumor Assays/methods
20.
Commun Biol ; 3(1): 470, 2020 Aug 21.
Article En | MEDLINE | ID: mdl-32843667

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

...