Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1175066, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37485515

RESUMEN

In this study, we used microscopic, spectroscopic, and molecular analysis to characterize endolithic colonization in gypsum (selenites and white crystalline gypsum) from several sites in Sicily. Our results showed that the dominant microorganisms in these environments are cyanobacteria, including: Chroococcidiopsis sp., Gloeocapsopsis pleurocapsoides, Gloeocapsa compacta, and Nostoc sp., as well as orange pigmented green microalgae from the Stephanospherinia clade. Single cell and filament sequencing coupled with 16S rRNA amplicon metagenomic profiling provided new insights into the phylogenetic and taxonomic diversity of the endolithic cyanobacteria. These organisms form differently pigmented zones within the gypsum. Our metagenomic profiling also showed differences in the taxonomic composition of endoliths in different gypsum varieties. Raman spectroscopy revealed that carotenoids were the most common pigments present in the samples. Other pigments such as gloeocapsin and scytonemin were also detected in the near-surface areas, suggesting that they play a significant role in the biology of endoliths in this environment. These pigments can be used as biomarkers for basic taxonomic identification, especially in case of cyanobacteria. The findings of this study provide new insights into the diversity and distribution of phototrophic microorganisms and their pigments in gypsum in Southern Sicily. Furthemore, this study highlights the complex nature of endolithic ecosystems and the effects of gypsum varieties on these communities, providing additional information on the general bioreceptivity of these environments.

2.
Chemosphere ; 335: 139079, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37268232

RESUMEN

Compared to compliance leaching tests performed on granular materials, leaching experiments on monolithic slags are more suitable for predicting the contaminant release when large boulders or poured slag layers are submerged in water, a specific environmental scenario typical for many smelting sites. We conducted EN 15863 dynamic monolithic leaching tests on massive copper slags over a prolonged period of 168 d. The patterns of the major contaminant (Cu, Co) fluxes indicated an initial diffusion process followed by the dissolution of primary sulfides with the maximum cumulative releases attaining 75.6 mg/m2 Cu and 4.20 mg/m2 Co. A multi-method mineralogical investigation showed that lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) started to form on the slag surface already after 9 d of leaching and partly immobilized Cu (but not Co). Vanadium and other trace elements (Zn, Pb, Cd) were leached to a much lower extent, initially controlled by diffusion followed by depletion and/or sorption to Fe oxyhydroxides. The results of the long-term leaching of the monolithic slag provide new information about the key processes affecting the release of metal (loid) contaminants under specific submerged conditions and have implications for the environmental management of slag disposal sites and/or potential reuse of slags in civil engineering.


Asunto(s)
Cobre , Oligoelementos , Metales
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 292: 122406, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36738580

RESUMEN

Microbial colonisations of gypsum from Eastern Poland (Badenian, Middle Miocene age) were investigated by Raman microspectrometry with a rarely used excitation 445 nm excitation. Zones of microbial colonisation in selenitic gypsum endolithic outcrops comprise algae and cyanobacteria, which commonly contain the photosynthetic and protective pigments carotenoids, scytonemin and gloeocapsin. Diagnostic bands differing from those of scytonemin have been identified in black colonies in gypsum outcrops at Chotel Czierwony (Poland). Raman spectral signatures of scytonin are reported here for the first time in two endolithic specimens identified by the band wavenumbers predicted from DFT calculations. The strong or medium strong intensity Raman bands observed at 1603, 1585, 1559, 1435, and 1424 cm-1. Other weaker bands were located at 1676 (sh), 1660 (sh), 1649, 1399, 1362, 1342, 1320, 1294, 1272, 1259, and 1052 cm-1. The first observation of the Raman spectrum of scytonin in the cyanobacterial colonisation of gypsum facilitates the inclusion of this new biomolecular signature in the library of unique Raman spectra of biological pigments invaluable for detection of traces of life in frame of the planetary missions.


Asunto(s)
Sulfato de Calcio , Cianobacterias , Sulfato de Calcio/química , Exobiología/métodos , Indoles/química , Cianobacterias/química
4.
Geohealth ; 6(11): e2022GH000683, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36348990

RESUMEN

We studied the dust fractions of the smelting slag, mine tailings, and soil from the former Ni-Cu mining and processing district in Selebi-Phikwe (eastern Botswana). Multi-method chemical and mineralogical investigations were combined with oral bioaccessibility testing of the fine dust fractions (<48  and <10 µm) in a simulated gastric fluid to assess the potential risk of the intake of metal(loid)s contaminants. The total concentrations of the major contaminants varied significantly (Cu: 301-9,600 mg/kg, Ni: 850-7,000 mg/kg, Co: 48-791 mg/kg) but were generally higher in the finer dust fractions. The highest bioaccessible concentrations of Co, Cu, and Ni were found in the slag and mine tailing dusts, where these metals were mostly bound in sulfides (pentlandite, pyrrhotite, chalcopyrite). On the contrary, the soil dusts exhibited substantially lower bioaccessible fractions of these metals due to their binding in less soluble spinel-group oxides. The results indicate that slag dusts are assumed to be risk materials, especially when children are considered as a target group. Still, this exposure scenario seems unrealistic due to (a) the fencing of the former mine area and its inaccessibility to the local community and (b) the low proportion of the fine particles in the granulated slag dump and improbability of their transport by wind. The human health risk related to the incidental ingestion of the soil dust, the most accessible to the local population, seems to be quite limited in the Selebi-Phikwe area, even when a higher dust ingestion rate (280 mg/d) is considered.

5.
Anal Chim Acta ; 1209: 339027, 2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35569857

RESUMEN

This review focuses on the progress made and recent developments regarding the use of portable Raman spectrometric devices in the geosciences as well as with scientific testing of objects of cultural heritage. By utilizing different types of Raman spectrometric devices - from the modular; through systems operating with optical heads mounted via optical fibers; to the compact, lightweight, and handheld - are herein described and critically evaluated. The wide range of applications under indoor and closed environments (museums, collections, religious buildings, etc.) are reviewed, and the more commonly used for characterization of art in the broadest sense, as well as fully outdoor investigations (e.g., on rocky outcrops; of the minerals, microbiological colonization, etc.), and including extreme Earth environments and projects with exo-planetary research potential. The rapid acquisition of relevant spectroscopic data and the non-destructiveness of the analyses and diagnostics are greatly appreciated by art historians and conservators on the one hand, as well as by mineralogists, geoscientists, microbiologists on the other. The various environments investigated and the broad range of compounds that can be detected by obtaining their Raman spectra have demonstrated the vast potential of portable, and especially handheld, Raman spectrometer devices for on-site applications.


Asunto(s)
Minerales , Espectrometría Raman , Minerales/análisis , Espectrometría Raman/métodos
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 276: 121156, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35390753

RESUMEN

Eight miniaturized Raman spectrometers were used to perform a fast outdoor screening and discrimination of carotenoids of a series of halophilic and non-halophilic microorganisms on a set of eight lyophilized samples, each containing high concentrations of a specific dominant carotenoid pigment. Raman spectra were acquired using different excitations (532, 785, sequentially shifted excitation of 785 and 853, and 1064 nm), based on the model of each Raman spectrometer, in order to ascertain the feasibility of individual wavelengths. The wavenumber positions of diagnostic Raman bands of carotenoids were observed for the different carotenoid species. Characteristic carotenoid Raman bands of the pigment bacterioruberin were reported (using the 532 nm excitation) at 1504-1509 cm-1, salinixanthin at 1510-1513 cm-1, spirilloxanthin at 1509-1513 cm-1, decaprenoxanthin at 1519 cm-1, ß-carotene at 1526 cm-1, and sarcinaxanthin at 1526-1528 cm-1. A 532 nm excitation consistently provided best results due to the significant resonance signal enhancement (both quantitative and qualitative carotenoid detection). Good results were also obtained using the sequentially shifted excitation combining two lasers in the near infrared spectral region, and similarly good results were acquired using a standard 1064 nm excitation. The least suitable was a 785 nm excitation, with the carotenoid Raman signal almost always weaker compared to major fluorescence signal arising from other types of pigments or biomolecules in the samples. A thorough light shielding was essential in order to acquire good quality data. This study shows that miniaturized Raman spectrometers, some even equipped with longer wavelength excitation, are able to detect different carotenoid pigments under non-laboratory conditions in a fast way, and discriminate between them, to a certain degree. The implications of this type of research are especially useful in astrobiology, where the searching, detection and discrimination of biomarkers such as carotenoids is receiving significant attention.


Asunto(s)
Carotenoides , Espectrometría Raman , Rayos Láser , Espectrometría Raman/métodos , beta Caroteno
7.
Sci Total Environ ; 819: 152008, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852251

RESUMEN

Arsenic incorporation into newly formed As sulfides has recently been identified as an important As sequestration pathway in both laboratory experiments and natural As-wetlands. Here, we used an in situ experimental technique with double nylon experimental bags (10-µm mesh) to study the effect of low-cost organic materials (sawdust, wood cubes and hemp shives) on As sulfidation in three naturally As-enriched wetland soils under water-saturated (~1 m depth) and neutral pH conditions. After 15 months of in situ incubation, all of the organic materials and their corresponding inner bags were covered by yellow-black mineral accumulations, dominantly composed of crystalline As4S4 polymorphs (realgar and bonazziite) and reactive Fe(II) sulfides (probably mackinawite); while the major fraction of As (~80%) was sequestered as AsS minerals. The amount of As accumulation in the experimental bags varied significantly (0.03-4.24 g As kg-1) and corresponded with different levels of As (0.23-9.4 mg As L-1) in the groundwater. Our findings suggest an authigenic formation of AsS minerals in strongly reducing conditions of experimental bags by a combination of reduced exchange of solutes through the pores of the bag and comparatively fast microbial production of dissolved sulfide. Arsenic sulfide formation, as an effective treatment mechanism for natural and human-constructed wetlands, appears to be favored for As(III)-rich waters with a low Fe(II)/As(III) molar ratio. These conditions prevent the consumption of dissolved As and sulfide by their preferential incorporation into natural organic matter, and newly-formed Fe(II) sulfides, respectively.


Asunto(s)
Arsénico , Agua Subterránea , Arsénico/química , Agua Subterránea/química , Humanos , Minerales , Oxidación-Reducción , Suelo/química , Humedales
8.
Commun Biol ; 4(1): 216, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603225

RESUMEN

A marked 120 My gap in the fossil record of vampire squids separates the only extant species (Vampyroteuthis infernalis) from its Early Cretaceous, morphologically-similar ancestors. While the extant species possesses unique physiological adaptations to bathyal environments with low oxygen concentrations, Mesozoic vampyromorphs inhabited epicontinental shelves. However, the timing of their retreat towards bathyal and oxygen-depleted habitats is poorly documented. Here, we document a first record of a post-Mesozoic vampire squid from the Oligocene of the Central Paratethys represented by a vampyromorph gladius. We assign Necroteuthis hungarica to the family Vampyroteuthidae that links Mesozoic loligosepiids with Recent Vampyroteuthis. Micropalaeontological, palaeoecological, and geochemical analyses demonstrate that Necroteuthis hungarica inhabited bathyal environments with bottom-water anoxia and high primary productivity in salinity-stratified Central Paratethys basins. Vampire squids were thus adapted to bathyal, oxygen-depleted habitats at least since the Oligocene. We suggest that the Cretaceous and the early Cenozoic OMZs triggered their deep-sea specialization.


Asunto(s)
Aclimatación , Evolución Biológica , Decapodiformes/metabolismo , Ecosistema , Fósiles , Oxígeno/metabolismo , Animales , Decapodiformes/ultraestructura , Fósiles/ultraestructura , Hipoxia , Microscopía Electrónica de Rastreo , Océanos y Mares , Espectroscopía Infrarroja por Transformada de Fourier , Microtomografía por Rayos X
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118818, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32862060

RESUMEN

Organic minerals occur rather rarely in some types of peat bogs, sedimentary geological environments, and hydrothermal veins. Commonly, calcium oxalates are produced by several plants, terpenoids are often associated with conifers. Because of the organic precursor, these minerals, from the smallest group of the mineralogical system, are sometimes considered as biomarkers. Potential detection of these compounds has high relevance in the fields of exobiology or geobiology. Here we show the potential of four portable Raman spectrometers, using different excitation wavelengths and technologies (operating at 532, 785, and 1064nm together with an advanced spectrometer using the sequentially shifted excitation (SSE) technology), for the rapid and non-destructive identification of these phases. For the organic minerals investigated here, the most intense Raman bands are generally detected at the expected wavenumber positions ±1-4cm-1 in the region 100-2000cm-1 in the spectra obtained from all spectrometers. Additionally, two spectrometers (the 532nm instrument and the SSE) are capable of detecting Raman bands in the higher wavenumber shift region of 2000-3500cm-1, allowing the more detailed characterization and differentiation of the related phases. From this work, and on the basis of the experimental data obtained, it is clear that the longer laser excitation wavelengths are more preferable for organic minerals identification due to the better mitigation of fluorescence emission. In contrast, the Raman spectrometer equipped with the shortest excitation wavelength (532nm) gives a significantly higher spectral resolution and a more detailed discrimination of the Raman bands, provided that the conditions of general lower level of fluorescence emission are met. The results presented in the current study complement the knowledge on minerals and biomarkers of relevance for Martian environments which have been measured with mobile Raman spectrometers. The outcome creates a solid base towards the use of lightweight mobile Raman systems that can be used outdoors and on terrestrial outcrops. Moreover, these results and conclusions are of use for the further development of dedicated spectrometers destined for the instrumental suites on planetary rovers, in the frame of the forthcoming exobiology focused missions to Mars to be launched by NASA and ESA.

10.
FEMS Microbiol Lett ; 366(20)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31804687

RESUMEN

Inclusions in evaporitic minerals sometimes contain remnants of microorganisms or biomarkers, which can be considered as traces of life. Raman spectroscopy with resonance enhancement is one of the best analytical methods to search for such biomarkers in places of interest for astrobiology, including the surface and near subsurface of planet Mars. Portable Raman spectrometers are used as training tools for detection of biomarkers. Investigations of the limits and challenges of detecting biomolecules in crystals using Raman spectroscopy is important because natural occurrences often involve mineral assemblages as well as their fluid and solid inclusions. A portable Raman spectrometer with 532 nm excitation was used for detection of carotenoid biomarkers: salinixanthin of Salinibacter ruber (Bacteroidetes) and α-bacterioruberin of Halorubrum sodomense (Halobacteria) in laboratory-grown artificial inclusions in compound crystals of several chlorides and sulfates, simulating entrapment of microorganisms in evaporitic minerals. Crystals of halite (NaCl), sylvite (KCl), arcanite (K2SO4) and tschermigite ((NH4)Al(SO4)2·12H2O) were grown from synthetic solutions that contained microorganisms. A second crystalline layer of NaCl or K2SO4 was grown subsequently so that primary crystals containing microorganisms are considered as solid inclusions. A portable Raman spectrometer with resonance enabling excitation detected signals of both carotenoid pigments. Correct positions of diagnostic Raman bands corresponding to the specific carotenoids were recorded.


Asunto(s)
Carotenoides/análisis , Cloruros/química , Exobiología , Marte , Células Procariotas/química , Espectrometría Raman/instrumentación , Sulfatos/química , Bacterias/química , Cristalización
11.
Front Microbiol ; 10: 1155, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191483

RESUMEN

We present a comparison of the performance of four miniature portable Raman spectrometers for the discrimination of carotenoids in samples of carotene-producing microorganisms. Two spectrometers using a green laser allowing to obtain Resonance Raman (or pre-Resonance Raman) signals, one instrument with a 785 nm laser, and a recently developed Portable Sequentially Shifted Excitation Raman spectrometer (PSSERS) were used for identifying major pigments of different halophilic (genera Halobacterium, Halorubrum, Haloarcula, Salinibacter, Ectothiorhodospira, Dunaliella) and non-halophilic microorganisms (Micrococcus luteus, Corynebacterium glutamicum). Using all the tested instruments including the PSSERS, strong carotenoids signals corresponding to the stretching vibrations in the polyene chain and in-plane rocking modes of the attached CH3 groups were found at the correct positions. Raman spectra of carotenoids can be obtained from different types of microbiological samples (wet pellets, lyophilized culture biomass and pigment extracts in organic solvents), and can be collected fast and without time-consuming procedures.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 212: 262-271, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30658280

RESUMEN

We tested the potential of Raman microspectroscopy to determine carotenoid pigments - both primary (lutein, beta-carotene) and secondary (astaxanthin) carotenoids - in the different species and life-cycle stages of snow algae from the order Chlamydomonadales (Chlorophyta). We compared the performance of Raman spectrometry to a reference method of biological pigment analysis, high-performance liquid chromatography (HPLC). The three main carotenoid Raman bands of the astaxanthin-rich red cysts were located at 1520, 1156 and 1006 cm-1. The shifts (orange aplanozygotes and green motile cells with flagella) in the position of the ν1(CC) Raman band of the polyenic chain is consistent with the expected changes in the ratios of the various carotenoid pigments. Flagellated green cells commonly contain lutein as a major carotenoid, together with minor amounts of ß­carotene and varying amounts of antheraxanthin, violaxanthin and neoxanthin. Aplanozygotes contain mixtures of both primary and secondary carotenoids. In most cases, the ν1(CC) band is an overlapping set of bands, which is due to the signal of all carotenoid pigments in the sample, and a deconvolution along with the band position shifts (mainly ν1) could be used to characterize the mixture of carotenoids. However, the ability of Raman spectroscopy to discriminate between structurally slightly differing carotenoid pigments or several carotenoids in an admixture in an unknown biological system remains limited.


Asunto(s)
Carotenoides/análisis , Cromatografía Líquida de Alta Presión/métodos , Nieve , Espectrometría Raman/métodos , Clorofila/análisis , Clorofila A/análisis , Europa (Continente) , Geografía , Microalgas , Microespectrofotometría
13.
Anal Bioanal Chem ; 410(18): 4437-4443, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29725727

RESUMEN

Cell suspensions of the haloarchaea Halorubrum sodomense and Halobacterium salinarum and the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) in saturated solutions of chlorides and sulfates (NaCl, KCl, MgSO4·7H2O, K2SO4, and (NH4)Al(SO4)2·12H2O) were left to evaporate to produce micrometric inclusions in laboratory-grown crystals. Raman spectra of these pinkish inclusions were obtained using a handheld Raman spectrometer with green excitation (532 nm). This portable instrument does not include any microscopic tool. Acceptable Raman spectra of carotenoids were obtained in the range of 200-4000 cm-1. This detection achievement was related to the mode of illumination and collection of scattered light as well as due to resonance Raman enhancement of carotenoid signals under green excitation. The position of diagnostic Raman carotenoid bands corresponds well to those specific carotenoids produced by a given halophile. To our best knowledge, this is the first study of carotenoids included in the laboratory in crystalline chlorides and sulfates, using a miniature portable Raman spectrometer. Graphical abstract ᅟ.


Asunto(s)
Bacteroidetes/química , Carotenoides/análisis , Halobacterium salinarum/química , Halorubrum/química , Cloruro de Potasio/química , Cloruro de Sodio/química , Espectrometría Raman/instrumentación , Sulfatos/química , Límite de Detección
14.
Environ Pollut ; 237: 83-92, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29477118

RESUMEN

Dust emissions from copper smelters processing arsenic-bearing ores represent a risk to soil environments due to the high levels of As and other inorganic contaminants. Using an in situ experiment in four different forest and grassland soils (pH 3.2-8.0) we studied the transformation of As-rich (>50 wt% As) copper smelter dust over 24 months. Double polyamide bags with 1 g of flue dust were buried at different depths in soil pits and in 6-month intervals; then those bags, surrounding soil columns, and soil pore waters were collected and analysed. Dust dissolution was relatively fast during the first 6 months (5-34%), and mass losses attained 52% after 24 months. The key driving forces affecting dust dissolution were not only pH, but also the water percolation/retention in individual soils. Primary arsenolite (As2O3) dissolution was responsible for high As release from the dust (to 72%) and substantial increase of As in the soil (to a 56 × increase; to 1500 mg kg-1). Despite high arsenolite solubility, this phase persisted in the dust after 2 years of exposure. Mineralogical investigation indicated that mimetite [Pb5(AsO4)3(Cl,OH)], unidentified complex Ca-Pb-Fe-Zn arsenates, and Fe oxyhydroxides partly controlled the mobility of As and other metal(loid)s. Compared to As, other less abundant contaminants (Bi, Cu, Pb, Sb, Zn) were released into the soil to a lesser extent (8-40% of total). The relatively high mobility of As in the soil can be seen from decreases of bulk As concentrations after spring snowmelt, high water-extractable fractions with up to ∼50% of As(III) in extracts, and high As concentrations in soil pore waters. Results indicate that efficient controls of emissions from copper smelters and flue dust disposal sites are needed to prevent extensive contamination of nearby soils by persistent As.


Asunto(s)
Arsénico/análisis , Residuos Industriales/análisis , Eliminación de Residuos/métodos , Contaminantes del Suelo/análisis , Suelo/química , Cobre/análisis , Polvo/análisis , Monitoreo del Ambiente , Metalurgia , Metales/análisis
15.
J Environ Manage ; 209: 71-80, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29276995

RESUMEN

Increasing amounts of impurities (especially As) in Cu ores have aggravated the problem of flue dust generation in recent years. As an example from a smelter processing As-rich Cu ores, we characterized a flue dust particularly rich in As (>50 wt%) to understand its mineralogy and pH-dependent leaching behavior, with special emphasis on binding, release and solubility controls of inorganic contaminants (As, Bi, Cd, Cu, Pb, Sb, Zn). Whereas arsenolite (As2O3) was the major host for As and Sb, other contaminants were bound in sulfides, arsenates, alloys and slag-like particles. The EU regulatory leaching test (EN 12457-2) indicated that leached As, Cd, Sb and Zn significantly exceeded the limit values for landfills accepting hazardous waste. The pH-dependent leaching test (CEN/TS 14997) revealed that As, Sb and Pb exhibited the greatest leaching at pH 11-12, whereas Cd, Cu and Zn were leached most under acidic condition (pH 3) and Bi leaching was pH-independent. Mineralogical investigation of leached residue coupled with geochemical modeling confirmed that newly formed Ca, Pb and Ca-Pb arsenates (mimetite, Pb5(AsO4)3Cl) partly control the release of As and other contaminants under circumneutral and alkaline conditions and will be of key importance for the fate of smelter-derived contamination in soils or when stabilization technology is employed.


Asunto(s)
Contaminantes Atmosféricos/química , Arsenicales/química , Óxidos/química , Arsénico , Trióxido de Arsénico , Cobre , Polvo , Concentración de Iones de Hidrógeno , Metales Pesados
16.
Sci Rep ; 7(1): 4076, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28642499

RESUMEN

Alpheid snapping shrimps (Decapoda: Caridea: Alpheidae) constitute one of the model groups for inferences aimed at understanding the evolution of complex structural, behavioural, and ecological traits among benthic marine invertebrates. Despite being a super-diverse taxon with a broad geographical distribution, the alpheid fossil record is still poorly known. However, data presented herein show that the strongly calcified fingertips of alpheid snapping claws are not uncommon in the fossil record and should be considered a novel type of mesofossil. The Cenozoic remains analysed here represent a compelling structural match with extant species of Alpheus. Based on the presence of several distinct snapping claw-fingertip morphotypes, the major radiation of Alpheus lineages is estimated to have occurred as early as 18 mya. In addition, the oldest fossil record of alpheids in general can now be confirmed for the Late Oligocene (27-28 mya), thus providing a novel minimum age for the entire group as well as the first reliable calibration point for deep phylogenetic inferences.


Asunto(s)
Decápodos/anatomía & histología , Fósiles , Distribución Animal , Animales , Decápodos/química , Geografía , Difracción de Rayos X
17.
Astrobiology ; 16(12): 913-924, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27901343

RESUMEN

We tested the potential of a miniaturized Raman spectrometer for use in field detection of snow algae pigments. A miniature Raman spectrometer, equipped with an excitation laser at 532 nm, allowed for the detection of carotenoids in cells of Chloromonas nivalis and Chlamydomonas nivalis at different stages of their life cycle. Astaxanthin, the major photoprotective pigment, was detected in algal blooms originating in snows at two alpine European sites that differed in altitude (Krkonose Mts., Czech Republic, 1502 m a.s.l., and Ötztal Alps, Austria, 2790 m a.s.l.). Comparison is made with a common microalga exclusively producing astaxanthin (Haematococcus pluvialis). The handheld Raman spectrometer is a useful tool for fast and direct field estimations of the presence of carotenoids (mainly astaxanthin) within blooms of snow algae. Application of miniature Raman instruments as well as flight prototypes in areas where microbes are surviving under extreme conditions is an important stage in preparation for successful deployment of this kind of instrumentation in the framework of forthcoming astrobiological missions to Mars. Key Words: Snow algae-Chloromonas nivalis-Chlamydomonas nivalis-On-site field detection-Raman spectroscopy-Astaxanthin. Astrobiology 16, 913-924.


Asunto(s)
Carotenoides/análisis , Chlorophyta/química , Miniaturización/instrumentación , Nieve/microbiología , Espectrometría Raman/instrumentación , Chlamydomonas/química , República Checa , Cubierta de Hielo
18.
Philos Trans A Math Phys Eng Sci ; 374(2082)2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27799426

RESUMEN

A miniature lightweight portable Raman spectrometer and a palm-sized device allow for fast and unambiguous detection of common gemstones mounted in complex jewels. Here, complex religious artefacts and the Ring Monstrance from the Loreto treasury (Prague, Czech Republic; eighteenth century) were investigated. These discriminations are based on the very good correspondence of the wavenumbers of the strongest Raman bands of the minerals. Very short laser illumination times and efficient collection of scattered light were sufficient to obtain strong diagnostic Raman signals. The following minerals were documented: quartz and its varieties, beryl varieties (emerald), corundum varieties (sapphire), garnets (almandine, grossular), diamond as well as aragonite in pearls. Miniature Raman spectrometers can be recommended for common gemmological work as well as for mineralogical investigations of jewels and cultural heritage objects whenever the antiquities cannot be transported to a laboratory.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'.

19.
Sci Total Environ ; 557-558: 192-203, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-26994806

RESUMEN

The mineralogical composition of mining wastes deposited in countless dumps around the world is the key factor that controls retention and release of pollutants. Here we report a multi-method data set combining mineralogical (X-ray diffraction, electron microprobe and Raman microspectrometry) and geochemical (sequential extraction and pore water analysis) methods to resolve As mobility in two 50-years-old mining waste dumps. Originally, all of the As in the mining wastes selected for the study was present as arsenopyrite and with time it has been replaced by secondary As phases. At Jedová jáma mining area, the most of As precipitated as X-ray amorphous ferric arsenate (HFA). Arsenic is also accumulated in the scorodite and Fe (hydr)oxide (with up to 3.2wt.% As2O5) that is particularly represented by hematite. Mining wastes at Dlouhá Ves contain only trace amount of scorodite. Arsenic is primarily bound to Pb-jarosite and Fe (hydr)oxides (especially goethite) with up to 1.6 and 1.8wt.% As2O5, respectively. The pore water collected after rainfall events indicated high concentrations of As (~4600µg·L(-1)) at Jedová jáma, whereas aqueous As at Dlouhá Ves was negligible (up to 1.5µg·L(-1)). Highly mobile As at Jedová jáma is attributed to the dissolution of HFA and simultaneous precipitation of Fe (hydr)oxides under mildly acidic conditions (pH~4.4); immobile As at Dlouhá Ves is due to the efficient adsorption on the Fe (hydr)oxides and hydroxosulfates under acidic pH of ~2.8. Taken together, As mobility in the ferric arsenates-containing mining wastes may significantly vary. These wastes must be kept under acidic conditions or with high aqueous Fe(III) concentrations to prevent the release of As from incongruent dissolution of ferric arsenates.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 154: 193-199, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26523686

RESUMEN

Minerals are traditionally identified under field conditions by experienced mineralogists observing the basic physical properties of the samples. Under laboratory conditions, a plethora of techniques are commonly used for identification of the geological phases based on their structural and spectroscopic parameters. In this area, Raman spectrometry has become a useful tool to complement the more widely applied XRD. Today, however, there is an acute need for a technique for unambiguous in situ identification of minerals, within the geological as well as planetary/exobiology realms. With the potential for miniaturization, Raman spectroscopy can be viewed as a practical technique to achieve these goals. Here, for the first time, the successful application of handheld Raman spectrometers is demonstrated to detect and discriminate arsenic phases in the form of earthy aggregates. The Raman spectroscopic analyses of arsenate minerals were performed in situ using two handheld instruments, using 532 and 785 nm excitation. Bukovskýite, kankite, parascorodite, and scorodite were identified from Kank near Kutná Hora, CZE; kankite, scorodite, and zýkaite were identified at the Lehnschafter gallery in an old silver mine at Mikulov near Teplice, Bohemian Massif, CZE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...