Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(18): 12601-12608, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38687243

RESUMEN

The burgeoning necessity to discover new methodologies for the synthesis of long-chain hydrocarbons and oxygenates, independent of traditional reliance on high-temperature, high-pressure, and fossil fuel-based carbon, is increasingly urgent. In this context, we introduce a nonthermal plasma-based strategy for the initiation and propagation of long-chain carbon growth from biogas constituents (CO2 and CH4). Utilizing a plasma reactor operating at atmospheric room temperature, our approach facilitates hydrocarbon chain growth up to C40 in the solid state (including oxygenated products), predominantly when CH4 exceeds CO2 in the feedstock. This synthesis is driven by the hydrogenation of CO2 and/or amalgamation of CHx radicals. Global plasma chemistry modeling underscores the pivotal role of electron temperature and CHx radical genesis, contingent upon varying CO2/CH4 ratios in the plasma system. Concomitant with long-chain hydrocarbon production, the system also yields gaseous products, primarily syngas (H2 and CO), as well as liquid-phase alcohols and acids. Our finding demonstrates the feasibility of atmospheric room-temperature synthesis of long-chain hydrocarbons, with the potential for tuning the chain length based on the feed gas composition.

2.
Foods ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38540814

RESUMEN

Fresh blueberries are delicate, hand-picked, packaged, and refrigerated fruits vulnerable to spoilage and contamination. Cold atmospheric plasma (CAP) is a promising antimicrobial technology; therefore, this study evaluated the CAP treatment effect on acid-tolerant Listeria innocua and Listeria monocytogenes and evaluated changes in the quality of the treated fruit. Samples were spot-inoculated with pH 5.5 and 6.0 acid-adapted Listeria species. Samples were treated with gliding arc CAP for 15, 30, 45, and 60 s and evaluated after 0, 1, 4, 7, and 11 days of storage at 4 °C and 90% humidity for the following quality parameters: total aerobic counts, yeast and molds, texture, color, soluble solids, pH, and titratable acidity. CAP treatments of 30 s and over demonstrated significant reductions in pathogens under both the resistant strain and pH conditions. Sixty-second CAP achieved a 0.54 Log CFU g-1 reduction in L. monocytogenes (pH 5.5) and 0.28 Log CFU g-1 for L. monocytogenes (pH 6.0). Yeast and mold counts on day 0 showed statistically significant reductions after 30, 45, and 60 s CAP with an average 2.34 Log CFU g-1 reduction when compared to non-CAP treated samples. Quality parameters did not show major significant differences among CAP treatments during shelf life. CAP is an effective antimicrobial treatment that does not significantly affect fruit quality.

3.
J Am Chem Soc ; 145(51): 28233-28239, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38103175

RESUMEN

By inducing CO2-pulsed discharges within microchannel bubbles and regulating thus-forming plasma microbubbles, we observe high-performance, catalyst-free coformation of hydrogen peroxide (H2O2) and oxalate directly from CO2 and water. With isotope-labeled C18O2 as the feedstock, peaks of H218O16O and H216O2 observed by ex situ surface-enhanced Raman spectra indicate that single-atom oxygen (O) from CO2 dissociations and H2O-derived OH radicals both contribute to H2O2 formation. The global plasma chemistry modeling suggests that high-density, energy-intense electron supply enables high-density CO2- (aq) and HCO2- (aq) formation and their subsequent coupling to produce oxalate. The enhanced solvation of CO2, facilitated by the efficient transport of CxOy ionic species and CO, is demonstrated as a crucial benefit of spark discharges interacting with water at the bubble interface. We expect this plasma microbubble approach to provide a novel power-to-chemical avenue to convert CO2 into valuable H2O2 and oxalic acid platform chemicals, thus leveraging renewable energy resources.

4.
Biofilm ; 6: 100154, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37771391

RESUMEN

Healing and treatment of chronic wounds are often complicated due to biofilm formation by pathogens. Here, the efficacy of plasma activated water (PAW) as a pre-treatment strategy has been investigated prior to the application of topical antiseptics polyhexamethylene biguanide, povidone iodine, and MediHoney, which are routinely used to treat chronic wounds. The efficacy of this treatment strategy was determined against biofilms of Escherichia coli formed on a plastic substratum and on a human keratinocyte monolayer substratum used as an in vitro biofilm-skin epithelial cell model. PAW pre-treatment greatly increased the killing efficacy of all the three antiseptics to eradicate the E. coli biofilms formed on the plastic and keratinocyte substrates. However, the efficacy of the combined PAW-antiseptic treatment and single treatments using PAW or antiseptic alone was lower for biofilms formed in the in vitro biofilm-skin epithelial cell model compared to the plastic substratum. Scavenging assays demonstrated that reactive species present within the PAW were largely responsible for its anti-biofilm activity. PAW treatment resulted in significant intracellular reactive oxygen and nitrogen species accumulation within the E. coli biofilms, while also rapidly acting on the microbial membrane leading to outer membrane permeabilisation and depolarisation. Together, these factors contribute to significant cell death, potentiating the antibacterial effect of the assessed antiseptics.

5.
Microbiol Spectr ; 11(4): e0003423, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37428084

RESUMEN

The effect of plasma-activated water (PAW) generated with a dielectric barrier discharge diffusor (DBDD) system on microbial load and organoleptic quality of cucamelons was investigated and compared to the established sanitizer, sodium hypochlorite (NaOCl). Pathogenic serotypes of Escherichia coli, Salmonella enterica, and Listeria monocytogenes were inoculated onto the surface of cucamelons (6.5 log CFU g-1) and into the wash water (6 log CFU mL-1). PAW treatment involved 2 min in situ with water activated at 1,500 Hz and 120 V and air as the feed gas; NaOCl treatment was a wash with 100 ppm total chlorine; control treatment was a wash with tap water. PAW treatment produced a 3-log CFU g-1 reduction of pathogens on the cucamelon surface without negatively impacting quality or shelf life. NaOCl treatment reduced the pathogenic bacteria on the cucamelon surface by 3 to 4 log CFU g-1; however, this treatment also reduced fruit shelf life and quality. Both systems reduced 6-log CFU mL-1 pathogens in the wash water to below detectable limits. The critical role of superoxide anion radical (·O2-) in the antimicrobial power of DBDD-PAW was demonstrated through a Tiron scavenger assay, and chemistry modeling confirmed that ·O2- generation readily occurs in DBDD-PAW generated with the employed settings. Modeling of the physical forces produced during plasma treatment showed that bacteria likely experience strong local electric fields and polarization. We hypothesize that these physical effects synergize with reactive chemical species to produce the acute antimicrobial activity seen with the in situ PAW system. IMPORTANCE Plasma-activated water (PAW) is an emerging sanitizer in the fresh food industry, where food safety must be achieved without a thermal kill step. Here, we demonstrate PAW generated in situ to be a competitive sanitizer technology, providing a significant reduction of pathogenic and spoilage microorganisms while maintaining the quality and shelf life of the produce item. Our experimental results are supported by modeling of the plasma chemistry and applied physical forces, which show that the system can generate highly reactive ·O2- and strong electric fields that combine to produce potent antimicrobial power. In situ PAW has promise in industrial applications as it requires only low power (12 W), tap water, and air. Moreover, it does not produce toxic by-products or hazardous effluent waste, making it a sustainable solution for fresh food safety.


Asunto(s)
Antiinfecciosos , Desinfectantes , Salmonella enterica , Microbiología de Alimentos , Frutas/microbiología , Recuento de Colonia Microbiana , Manipulación de Alimentos/métodos , Desinfectantes/farmacología
6.
Foods ; 12(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37174301

RESUMEN

A novel food processing technique based on the combination of cold atmospheric plasma (CAP) and chitosan oligosaccharide treatment (COS) was developed to enhance antibacterial performance and extend the shelf life of Pacific white shrimp (Litopenaeus vannamei). Effects of different treatments on the microbial community composition, physicochemical properties, and post-storage behaviors of Pacific white shrimp were evaluated during chilled storage for up to 10 days. Results showed that the synergistic effects of COS and CAP could be obtained, largely inhibiting the growth of microorganisms. The content of total volatile basic nitrogen (TVB-N), total viable counts (TVC), and pH value in treated groups were lower than in the control group and the loss of moisture content, water activity, and sensory score were observed. Compared to the control group, shrimp was on the verge of spoilage on the 6th day of storage, while the COS-CAP-treated shrimp had a 4-day lag period. Moreover, the COS and CAP could effectively inhibit the growth of Aliivibrio, the predominant microbial group in the ultimate storage period. This study suggests that the combined utilization of COS and CAP could be a high-efficacy technique for extending the shelf-life of shrimp.

7.
Food Chem ; 421: 136201, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37105117

RESUMEN

Natural essential oils (EOs), especially those combining different individual EOs (also termed composite EOs) with enhanced performance, are becoming healthy, market-sought food preservatives/additives. This study aims to provide insights into the challenge regarding EOs processing due to their low solubility and the elusive mechanism under the enhanced bio-reactivity of composite EOs. A unique oil/water interacting network was created by phase-inversion processing, which enhances EO solubilization and emulsification to form composite EO formulations (EOFs) containing ordinary cinnamon, oregano and clove EOs. These EOFs mainly contained cinnamaldehyde, carvacrol and eugenol and exhibited excellent post-storage stability. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability of EOFs (at 15.880 µL/mL) was > 88%, and the Ferric reducing antioxidant power (FRAP) was 1.8 mM FeSO4·7H2O. The minimum inhibitory concentration (MIC) of EOFs against E. coli and S. aureus was ∼7.940 µL/mL. The EOFs could cause quick deterioration of bacterial structures, demonstrating high efficacy in bacteria-killing and anti-biofilm formation.


Asunto(s)
Aceites Volátiles , Origanum , Syzygium , Aceites Volátiles/farmacología , Aceites Volátiles/química , Origanum/química , Cinnamomum zeylanicum/química , Staphylococcus aureus , Emulsiones , Escherichia coli , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
8.
Meat Sci ; 200: 109165, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36958246

RESUMEN

The use of plasma-activated water (PAW) as an antimicrobial agent to inactivate Salmonella Typhimurium on chilled beef during meat washing was evaluated. Two meat washing methods, spraying and immersion, were evaluated at contact times of 15, 30 and 60 s and meat storage times of 0, 1 and 7 days. The temperature of PAW was elevated to 55 °C for washing as it increased the microbial inactivation compared to ambient temperature. At the contact time of 60 s and meat storage time of 7 days, PAW spraying and immersion achieved 0.737-log10 and 0.710-log10 reductions against Salmonella Typhimurium, respectively; there were no significant differences between both washing methods, with spraying being preferred for commercial implementation. Compared to untreated and water-treated samples, meat washing with PAW alone improved the S. Typhimurium inactivation and did not cause negative impacts on the lightness and hue angle values, TBARS value, water holding capacity and pH. However, PAW reduced the redness, yellowness and chroma values with the decreased oxymyoglobin values of 44.1% at the storage time of 1 day. PAW spraying at 55 °C followed by additional water washing at 25 °C for 60 s achieved 0.696-log10 reduction and mitigated a reduction in (i) the redness value, from 11.3 to 18.2, (ii) the yellowness value, from 9.19 to 11.1, and (iii) the chroma value, from 14.5 to 21.3, without displaying colour differences (∆E), as detected by human eyes, compared to water-treated samples. Moreover, the content of myoglobin forms was maintained by additional water washing.


Asunto(s)
Antiinfecciosos , Agua , Animales , Bovinos , Humanos , Agua/química , Inmersión , Carne , Temperatura , Recuento de Colonia Microbiana , Microbiología de Alimentos
9.
Carbohydr Polym ; 305: 120550, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36737199

RESUMEN

Inulin is a prebiotic carbohydrate widely used in food industry due to its health benefits and unique rheological properties. For the first time, this study explores the potential of natural inulin as a sustainable food additive to enhance surimi gel characteristics, specifically focusing on understanding its molecular weight effects. The good solubility of inulin facilitates the conversion of α-helix to other secondary conformations which are favorable for protein denaturation and aggregation during gelation. Moreover, the abundant -OH groups at the surface of inulin can boost the chemical forces within surimi proteins to reinforce the gel network. Compared to short-chain inulin, long-chain inulin can alleviate proteolysis, enhance hydrophobic interactions and intertwine with myosin molecules, thereby reinforcing the gel network. A more viscous long-chain inulin solution formed within surimi gels fills the space between aggregated proteins and facilitates the lock of water molecules, improving the water-holding capacity (WHC). Thus, an addition of 12 % long-chain inulin leads to an enhanced hardness of surimi gel from 943 to 1593 and improved WHC from 72 % to 85 %. A new inulin-myosin interaction mechanism model is also proposed to provide useful guidelines for surimi processing and expanding the application of inulin within the food industries.


Asunto(s)
Productos Pesqueros , Inulina , Peso Molecular , Productos Pesqueros/análisis , Geles/química , Manipulación de Alimentos , Miosinas , Agua
10.
Nat Commun ; 14(1): 818, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781856

RESUMEN

Metal-free electrocatalysts represent a main branch of active materials for oxygen evolution reaction (OER), but they excessively rely on functionalized conjugated carbon materials, which substantially restricts the screening of potential efficient carbonaceous electrocatalysts. Herein, we demonstrate that a mesostructured polyacrylate hydrogel can afford an unexpected and exceptional OER activity - on par with that of benchmark IrO2 catalyst in alkaline electrolyte, together with a high durability and good adaptability in various pH environments. Combined theoretical and electrokinetic studies reveal that the positively charged carbon atoms within the carboxylate units are intrinsically active toward OER, and spectroscopic operando characterizations also identify the fingerprint superoxide intermediate generated on the polymeric hydrogel backbone. This work expands the scope of metal-free materials for OER by providing a new class of polymeric hydrogel electrocatalysts with huge extension potentials.

11.
PLoS One ; 18(2): e0276248, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36753513

RESUMEN

Three-dimensional (3D) cell culture models can help bridge the gap between in vitro cell cultures and in vivo responses by more accurately simulating the natural in vivo environment, shape, tissue stiffness, stressors, gradients and cellular response while avoiding the costs and ethical concerns associated with animal models. The inclusion of the third dimension in 3D cell culture influences the spatial organization of cell surface receptors that interact with other cells and imposes physical restrictions on cells in compared to Two-dimensional (2D) cell cultures. Spheroids' distinctive cyto-architecture mimics in vivo cellular structure, gene expression, metabolism, proliferation, oxygenation, nutrition absorption, waste excretion, and drug uptake while preserving cell-extracellular matrix (ECM) connections and communication, hence influencing molecular processes and cellular phenotypes. This protocol describes the in vitro generation of tumourspheroids using the low attachment plate, hanging drop plate, and cellusponge natural scaffold based methods. The expected results from these protocols confirmed the ability of all these methods to create uniform tumourspheres.


Asunto(s)
Glioblastoma , Animales , Glioblastoma/metabolismo , Técnicas de Cultivo de Célula/métodos , Esferoides Celulares , Matriz Extracelular/metabolismo
12.
Bioresour Technol ; 369: 128370, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36423765

RESUMEN

Astaxanthin is used extensively in the nutraceutical, aquaculture, and cosmetic industries. The current market necessitates higher astaxanthin production from Phaffia rhodozyma (P. rhodozyma) due to its higher cost compared to chemical synthesis. In this study, a bubble discharge reactor was developed to generate plasma-activated water (PAW) to produce PAW-made yeast malt (YM) medium. Due to oxidative stress induced by PAW, strains cultured in 15 and 30 min-treated PAW-made medium produced 7.9 ± 1.2 % and 12.6 ± 1.4 % more carotenoids with 15.5 ± 3.3 % and 22.1 ± 1.3 % more astaxanthin, respectively. Reactive oxygen species (ROS) assay results showed that ROS generated by plasma-water interactions elevated intracellular ROS levels. Proteomic analysis revealed increased expression of proteins involved in the cellular response to oxidative stress as well as carotenoid biosynthesis, both of which contribute to higher yields of astaxanthin. Overall, this study supports the potential of PAW to increase astaxanthin yields for industrial-scale production.


Asunto(s)
Basidiomycota , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Basidiomycota/metabolismo , Estrés Oxidativo , Saccharomyces cerevisiae
13.
Drug Discov Today ; 28(2): 103426, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36332834

RESUMEN

This review focuses on recent advances in 3D culture systems that promise more accurate therapeutic models of the glioblastoma multiforme (GBM) tumor microenvironment (TME), such as the unique anatomical, cellular, and molecular features evident in human GBM. The key components of a GBM TME are outlined, including microbiomes, vasculature, extracellular matrix (ECM), infiltrating parenchymal and peripheral immune cells and molecules, and chemical gradients. 3D culture systems are evaluated against 2D culture systems and in vivo animal models. The main 3D culture techniques available are compared, with an emphasis on identifying key gaps in knowledge for the development of suitable platforms to accurately model the intricate components of the GBM TME.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Humanos , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Microambiente Tumoral
14.
Polymers (Basel) ; 14(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36235973

RESUMEN

Cellulose is the most abundant biopolymer on Earth, which is synthesized by plants, bacteria, and animals, with source-dependent properties. Cellulose containing ß-1,4-linked D-glucoses further assembles into hierarchical structures in microfibrils, which can be processed to nanocellulose with length or width in the nanoscale after a variety of pretreatments including enzymatic hydrolysis, TEMPO-oxidation, and carboxymethylation. Nanocellulose can be mainly categorized into cellulose nanocrystal (CNC) produced by acid hydrolysis, cellulose nanofibrils (CNF) prepared by refining, homogenization, microfluidization, sonification, ball milling, and the aqueous counter collision (ACC) method, and bacterial cellulose (BC) biosynthesized by the Acetobacter species. Due to nontoxicity, good biodegradability and biocompatibility, high aspect ratio, low thermal expansion coefficient, excellent mechanical strength, and unique optical properties, nanocellulose is utilized to develop various cellulose nanocomposites through solution casting, Layer-by-Layer (LBL) assembly, extrusion, coating, gel-forming, spray drying, electrostatic spinning, adsorption, nanoemulsion, and other techniques, and has been widely used as food packaging material with excellent barrier and mechanical properties, antibacterial activity, and stimuli-responsive performance to improve the food quality and shelf life. Under the driving force of the increasing green food packaging market, nanocellulose production has gradually developed from lab-scale to pilot- or even industrial-scale, mainly in Europe, Africa, and Asia, though developing cost-effective preparation techniques and precisely tuning the physicochemical properties are key to the commercialization. We expect this review to summarise the recent literature in the nanocellulose-based food packaging field and provide the readers with the state-of-the-art of this research area.

15.
PLoS One ; 17(9): e0274524, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36137100

RESUMEN

Since first identified in 1879, plasma, the fourth state of matter, has been developed and utilised in many fields. Nonthermal atmospheric plasma, also known as cold plasma, can be applied to liquids, where plasma reactive species such as reactive Oxygen and Nitrogen species and their effects can be retained and mediated through plasma-activated liquids (PAL). In the medical field, PAL is considered promising for wound treatment, sterilisation and cancer therapy due to its rich and relatively long-lived reactive species components. This study sought to identify any potential antagonistic effect between antioxidative intracellularly accumulated platinum nanoparticles (PtNPs) and PAL. We found that PAL can significantly reduce the viability of glioblastoma U-251MG cells. This did not involve measurable ROS influx but instead lead to lipid damage on the plasma membrane of cells exposed to PAL. Although the intracellular antioxidative PtNPs showed no protective effect against PAL, this study contributes to further understanding of principle cell killing routes of PAL and discovery of potential PAL-related therapy and methods to inhibit side effects.


Asunto(s)
Glioblastoma , Nanopartículas del Metal , Gases em Plasma , Antioxidantes/metabolismo , Antioxidantes/farmacología , Muerte Celular , Humanos , Peroxidación de Lípido , Lípidos , Nitrógeno , Oxígeno , Gases em Plasma/farmacología , Platino (Metal) , Especies Reactivas de Oxígeno/metabolismo
16.
J Appl Microbiol ; 132(4): 2490-2500, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34957649

RESUMEN

AIMS: This study aimed to compare the efficacy of plasma-activated water (PAW) generated by two novel plasma reactors against pathogenic foodborne illness organisms. METHODS AND RESULTS: The antimicrobial efficacy of PAW produced by a bubble spark discharge (BSD) reactor and a dielectric barrier discharge-diffuser (DBDD) reactor operating at atmospheric conditions with air, multiple discharge frequencies and Milli-Q and tap water, was investigated with model organisms Listeria innocua and Escherichia coli in situ. Optimal conditions were subsequently employed for pathogenic bacteria Listeria monocytogenes, E. coli and Salmonella enterica. DBDD-PAW reduced more than 6-log of bacteria within 1 min. The BSD-PAW, while attaining high log reduction, was less effective. Analysis of physicochemical properties revealed that BSD-PAW had a greater variety of reactive species than DBDD-PAW. Scavenger assays designed to specifically sequester reactive species demonstrated a critical role of superoxide, particularly in DBDD-PAW. CONCLUSIONS: DBDD-PAW demonstrated rapid antimicrobial activity against pathogenic bacteria, with superoxide the critical reactive species. SIGNIFICANCE AND IMPACT OF STUDY: This study demonstrates the potential of DBDD-PAW produced using tap water and air as a feasible and cost-effective option for antimicrobial applications, including food safety.


Asunto(s)
Antiinfecciosos , Listeria monocytogenes , Listeria , Gases em Plasma , Antiinfecciosos/farmacología , Recuento de Colonia Microbiana , Escherichia coli , Microbiología de Alimentos , Gases em Plasma/farmacología , Agua/química
17.
Crit Rev Food Sci Nutr ; 62(21): 5925-5949, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33764212

RESUMEN

In the last decades, different non-thermal and thermal technologies have been developed for food processing. However, in many cases, it is not clear which experimental parameters must be reported to guarantee the experiments' reproducibility and provide the food industry a straightforward way to scale-up these technologies. Since reproducibility is one of the most important science features, the current work aims to improve the reproducibility of studies on emerging technologies for food processing by providing guidelines on reporting treatment conditions of thermal and non-thermal technologies. Infrared heating, microwave heating, ohmic heating and radiofrequency heating are addressed as advanced thermal technologies and isostatic high pressure, ultra-high-pressure homogenization sterilization, high-pressure homogenization, microfluidization, irradiation, plasma technologies, power ultrasound, pressure change technology, pulsed electric fields, pulsed light and supercritical CO2 are approached as non-thermal technologies. Finally, growing points and perspectives are highlighted.


Asunto(s)
Conservación de Alimentos , Calor , Manipulación de Alimentos , Presión , Reproducibilidad de los Resultados
18.
Chemosphere ; 291(Pt 2): 132757, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34736946

RESUMEN

Antibiotics have been extensively used as pharmaceuticals for diverse applications. However, their overuse and indiscriminate discharge to water systems have led to increased antibiotic levels in our aquatic environments, which poses risks to human and livestock health. Non-thermal plasma water. However, the issues of process scalability and the mechanisms towards understanding the plasma-induced degradation remain. This study addresses these issues by coupling a non-thermal plasma jet with a continuous flow reactor to reveal the effective mechanisms of amoxicillin degradation. Four industry-relevant feeding gases (nitrogen, air, argon, and oxygen), discharge voltages, and frequencies were assessed. Amoxicillin degradation efficiencies achieved using nitrogen and air were much higher compared to argon and oxygen and further improved by increasing the applied voltage and frequency. The efficiency of plasma-induced degradation depended on the interplay of hydrogen peroxide (H2O2) and nitrite (NO2-), validated by mimicked chemical solutions tests. Insights into prevailing degradation pathways were elucidated through the detection of intermediate products by advanced liquid chromatography-mass spectrometry.


Asunto(s)
Gases em Plasma , Contaminantes Químicos del Agua , Amoxicilina , Humanos , Peróxido de Hidrógeno , Agua , Contaminantes Químicos del Agua/análisis
19.
Trends Cancer ; 7(10): 886-890, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34426143

RESUMEN

Various complex biological effects occur when ultrasonic compression waves travel through biological material. The myriad of biological outcomes instigated by ultrasound are evident when viewed through the lens of the hallmarks of cancer. Herein, we summarise the therapeutic potential of ultrasound, enhanced by microbubbles, for the treatment of cancer.


Asunto(s)
Microburbujas , Neoplasias , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Ondas Ultrasónicas
20.
Eur J Med Chem ; 224: 113736, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34384944

RESUMEN

Pyrazolopyrimidinones are fused nitrogen-containing heterocyclic systems, which act as a core scaffold in many pharmaceutically relevant compounds. Pyrazolopyrimidinones have been demonstrated to be efficient in treating several diseases, including cystic fibrosis, obesity, viral infection and cancer. In this study using glioblastoma U-251MG cell line, we tested the cytotoxic effects of 15 pyrazolopyrimidinones, synthesised via a two-step process, in combination with cold atmospheric plasma (CAP). CAP is an adjustable source of reactive oxygen and nitrogen species as well as other unique chemical and physical effects which has been successfully tested as an innovative cancer therapy in clinical trials. Significantly variable cytotoxicity was observed with IC50 values ranging from around 11 µM to negligible toxicity among tested compounds. Interestingly, two pyrazolopyrimidinones were identified that act in a prodrug fashion and display around 5-15 times enhanced reactive-species dependent cytotoxicity when combined with cold atmospheric plasma. Activation was evident for direct CAP treatment on U-251MG cells loaded with the pyrazolopyrimidinone and indirect CAP treatment of the pyrazolopyrimidinone in media before adding to cells. Our results demonstrated the potential of CAP combined with pyrazolopyrimidinones as a programmable cytotoxic therapy and provide screened scaffolds that can be used for further development of pyrazolopyrimidinone prodrug derivatives.


Asunto(s)
Antineoplásicos/uso terapéutico , Glioblastoma/tratamiento farmacológico , Gases em Plasma/metabolismo , Pirazoles/uso terapéutico , Piridinas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Pirazoles/farmacología , Piridinas/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...