Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Part Fibre Toxicol ; 20(1): 15, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085867

RESUMEN

BACKGROUND: Microbial dysbiosis is a potential mediator of air pollution-induced adverse outcomes. However, a systemic comparison of the lung and gut microbiome alterations and lung-gut axis following air pollution exposure is scant. In this study, we exposed male C57BL/6J mice to inhaled air, CB (10 mg/m3), O3 (2 ppm) or CB + O3 mixture for 3 h/day for either one day or four consecutive days and were euthanized 24 h post last exposure. The lung and gut microbiome were quantified by 16 s sequencing. RESULTS: Multiple CB + O3 exposures induced an increase in the lung inflammatory cells (neutrophils, eosinophils and B lymphocytes), reduced absolute bacterial load in the lungs and increased load in the gut. CB + O3 exposure was more potent as it decreased lung microbiome alpha diversity just after a single exposure. CB + O3 co-exposure uniquely increased Clostridiaceae and Prevotellaceae in the lungs. Serum short chain fatty acids (SCFA) (acetate and propionate) were increased significantly only after CB + O3 co-exposure. A significant increase in SCFA producing bacterial families (Ruminococcaceae, Lachnospiraceae, and Eubacterium) were also observed in the gut after multiple exposures. Co-exposure induced significant alterations in the gut derived metabolite receptors/mediator (Gcg, Glp-1r, Cck) mRNA expression. Oxidative stress related mRNA expression in lungs, and oxidant levels in the BALF, serum and gut significantly increased after CB + O3 exposures. CONCLUSION: Our study confirms distinct gut and lung microbiome alterations after CB + O3 inhalation co-exposure and indicate a potential homeostatic shift in the gut microbiome to counter deleterious impacts of environmental exposures on metabolic system.


Asunto(s)
Microbiota , Ozono , Ratones , Animales , Masculino , Ozono/toxicidad , Hollín/toxicidad , Ratones Endogámicos C57BL , Pulmón/metabolismo , ARN Mensajero/metabolismo
2.
Toxicol Sci ; 169(2): 499-510, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30825310

RESUMEN

Sex differences clearly exist in incidence, susceptibility, and severity of airway disease and in pulmonary responses to air pollutants such as ozone (O3). Prior rodent O3 exposure studies demonstrate sex-related differences in the expression of lung inflammatory mediators and signaling. However, whether or not sex modifies O3-induced airway physiologic responses remains less explored. To address this, we exposed 8- to 10-week-old male and female C57BL/6 mice to either 1 or 2 ppm O3 or filtered air (FA) for 3 h. At 12, 24, 48, and 72 h following exposure, we assessed airway hyperresponsiveness to methacholine (MCh), bronchoalveolar lavage fluid cellularity, cytokines and total protein/albumin, serum progesterone, and whole lung immune cells by flow cytometry. Male mice generated consistent airway hyperresponsiveness to MCh at all time points following exposure. Alternatively, females had less consistent airway physiologic responses to MCh, which were more variable between individual experiments and did not correlate with serum progesterone levels. Bronchoalveolar lavage fluid total cells peaked at 12 h and were persistently elevated through 72 h. At 48 h, bronchoalveolar lavage cells were greater in females versus males. Bronchoalveolar lavage fluid cytokines and total protein/albumin increased following O3 exposure without sex differences. Flow cytometry of whole lung tissue identified dynamic O3-induced immune cell changes also independent of sex. Our results indicate sex differences in acute O3-induced airway physiology responses and airspace influx without significant difference in other injury and inflammation measures. This study highlights the importance of considering sex as a biological variable in acute O3-induced airway physiology responses.


Asunto(s)
Ozono/toxicidad , Hipersensibilidad Respiratoria/inducido químicamente , Enfermedad Aguda , Animales , Citocinas/análisis , Femenino , Inmunofenotipificación , Masculino , Cloruro de Metacolina/farmacología , Ratones , Ratones Endogámicos C57BL , Progesterona/sangre , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA