Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
BJA Open ; 10: 100277, 2024 Jun.
Article En | MEDLINE | ID: mdl-38545565

Oxygen is the most used drug in anaesthesia. Despite such widespread use, optimal perioperative oxygen administration remains highly controversial because of concerns about the competing harms of both hyperoxia and hypoxia. Notwithstanding a Cochrane review concluding that routinely administering a fractional inspired oxygen concentration (FiO2) >0.6 intraoperatively might increase postoperative morbidity and mortality, the World Health Organization (WHO) currently recommends all anaesthetised patients receive 0.8 FiO2 during and immediately after surgery to reduce surgical site infections. Results from the largest trial available at the time of these two reviews (suggesting long-term survival may be worse with high FiO2, particularly in patients with malignant disease) were considered 'biologically implausible' by the WHO's Guideline Development Group. In addition, the integrity of some perioperative oxygen studies has been challenged. Resolving these controversies is of fundamental importance to all perioperative clinicians. This narrative review is based on the inaugural BJA William Mapleson lecture delivered by the senior author (AC) at the 2023 annual meeting of the Royal College of Anaesthetists in Birmingham. We present the current evidence for perioperative oxygen administration and contrast this with how oxygen therapy is targeted in other specialties (e.g. intensive care medicine). We will explore whether anaesthetists follow the WHO recommendations and consider how oxygen administration affects the stress response to surgery. We reason that novel clinical trial designs in combination with targeted experimental medicine studies will be required to improve our understanding of how best to optimise individualised perioperative oxygenation-a cornerstone of anaesthesia.

2.
Med Sci (Basel) ; 11(4)2023 11 01.
Article En | MEDLINE | ID: mdl-37987325

Acute hypoxic respiratory failure (AHRF) is a prominent feature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) critical illness. The severity of gas exchange impairment correlates with worse prognosis, and AHRF requiring mechanical ventilation is associated with substantial mortality. Persistent impaired gas exchange leading to hypoxemia often warrants the prolonged administration of a high fraction of inspired oxygen (FiO2). In SARS-CoV-2 AHRF, systemic vasculopathy with lung microthrombosis and microangiopathy further exacerbates poor gas exchange due to alveolar inflammation and oedema. Capillary congestion with microthrombosis is a common autopsy finding in the lungs of patients who die with coronavirus disease 2019 (COVID-19)-associated acute respiratory distress syndrome. The need for a high FiO2 to normalise arterial hypoxemia and tissue hypoxia can result in alveolar hyperoxia. This in turn can lead to local alveolar oxidative stress with associated inflammation, alveolar epithelial cell apoptosis, surfactant dysfunction, pulmonary vascular abnormalities, resorption atelectasis, and impairment of innate immunity predisposing to secondary bacterial infections. While oxygen is a life-saving treatment, alveolar hyperoxia may exacerbate pre-existing lung injury. In this review, we provide a summary of oxygen toxicity mechanisms, evaluating the consequences of alveolar hyperoxia in COVID-19 and propose established and potential exploratory treatment pathways to minimise alveolar hyperoxia.


COVID-19 , Hyperoxia , Lung Injury , Respiratory Distress Syndrome , Humans , SARS-CoV-2 , Critical Illness , Hyperoxia/complications , Oxygen , Hypoxia , Inflammation
3.
Open Biol ; 13(9): 230151, 2023 09.
Article En | MEDLINE | ID: mdl-37669692

Diurnal and seasonal rhythmicity, entrained by environmental and nutritional cues, is a vital part of all life on Earth operating at every level of organization; from individual cells, to multicellular organisms, whole ecosystems and societies. Redox processes are intrinsic to physiological function and circadian regulation, but how they are integrated with other regulatory processes at the whole-body level is poorly understood. Circadian misalignment triggered by a major stressor (e.g. viral infection with SARS-CoV-2) or recurring stressors of lesser magnitude such as shift work elicit a complex stress response that leads to desynchronization of metabolic processes. This in turn challenges the system's ability to achieve redox balance due to alterations in metabolic fluxes (redox rewiring). We infer that the emerging 'alternative redox states' do not always revert readily to their evolved natural states; 'Long COVID' and other complex disorders of unknown aetiology are the clinical manifestations of such rearrangements. To better support and successfully manage bodily resilience to major stress and other redox challenges needs a clear perspective on the pattern of the hysteretic response for the interaction between the redox system and the circadian clock. Characterization of this system requires repeated (ideally continuous) recording of relevant clinical measures of the stress responses and whole-body redox state (temporal redox phenotyping). The human/animal body is a complex 'system of systems' with multi-level buffering capabilities, and it requires consideration of the wider dynamic context to identify a limited number of stress-markers suitable for routine clinical decision making. Systematically mapping the patterns and dynamics of redox biomarkers along the stressor/disease trajectory will provide an operational model of whole-body redox regulation/balance that can serve as basis for the identification of effective interventions which promote health by enhancing resilience.


COVID-19 , Ecosystem , Animals , Humans , Health Promotion , SARS-CoV-2 , Circadian Rhythm , Oxidation-Reduction
5.
J Intensive Care Soc ; 23(3): 285-292, 2022 Aug.
Article En | MEDLINE | ID: mdl-36033252

Background: Whilst the management of Coronavirus disease-2019 (COVID-19) has evolved in response to the emerging data, treating such patients remains a challenge, and many treatments lack robust clinical evidence. We conducted a survey to evaluate Intensive Care Unit (ICU) management of COVID-19 patients with acute hypoxic respiratory failure and compared the results with data from a similar survey focusing on Acute Respiratory Distress Syndrome (ARDS) that was conducted in 2013. Methods: The questionnaire was refined from a previous survey of ARDS-related clinical practice using an online electronic survey engine (Survey Monkey®) and all UK intensivists were encouraged to participate. The survey was conducted between 16/05/2020 and 17/06/2020. Results: There were 137 responses from 89 UK centres. Non-invasive ventilation was commonly used in the form of CPAP. The primary ventilation strategy was the ARDSnet protocol, with 63% deviating from its PEEP recommendations. Similar to our previous ARDS survey, most allowed permissive targets for hypoxia (94%), hypercapnia (55%) and pH (94%). The routine use of antibiotics was common, and corticosteroids were frequently used, usually in the context of a clinical trial (45%). Late tracheostomy (>7 days) was preferred (92%). Routine follow-up was offered by 66% with few centres providing routine dedicated rehabilitation programmes following discharge. Compared to the ARDS survey, there is an increased use of neuromuscular agents, APRV ventilation and improved provision of rehabilitation services. Conclusions: Similar to our previous ARDS survey, this survey highlights variations in the management strategies used for patients with acute hypoxic respiratory failure due to COVID-19.

6.
Crit Care Explor ; 4(4): e0652, 2022 Apr.
Article En | MEDLINE | ID: mdl-35506014

Patients admitted to intensive care often require treatment with invasive mechanical ventilation and high concentrations of oxygen. Mechanical ventilation can cause acute lung injury that may be exacerbated by oxygen therapy. Uncertainty remains about which oxygen therapy targets result in the best clinical outcomes for these patients. This review aims to determine whether higher or lower oxygenation targets are beneficial for mechanically ventilated adult patients. DATA SOURCES: Excerpta Medica dataBASE, Medical Literature Analysis and Retrieval System Online, and Cochrane medical databases were searched from inception through to February 28, 2021. STUDY SELECTION: Randomized controlled trials comparing higher and lower oxygen targets in adult patients receiving invasive mechanical ventilation via an endotracheal tube or tracheostomy in an intensive care setting. DATA EXTRACTION: Study setting, participant type, participant numbers, and intervention targets were captured. Outcome measures included "mortality at longest follow-up" (primary), mechanical ventilator duration and free days, vasopressor-free days, patients on renal replacement therapy, renal replacement free days, cost benefit, and quality of life scores. Evidence certainty and risk of bias were evaluated using Grading of Recommendations Assessment, Development and Evaluation and the Cochrane Risk of Bias tool. A random-effects models was used. Post hoc subgroup analysis looked separately at studies comparing hypoxemia versus normoxemia and normoxemia versus hyperoxemia. DATA SYNTHESIS: Data from eight trials (4,415 participants) were analyzed. Comparing higher and lower oxygen targets, there was no difference in mortality (odds ratio, 0.95; 95% CI, 0.74-1.22), but heterogeneous and overlapping target ranges limit the validity and clinical relevance of this finding. Data from seven studies (n = 4,245) demonstrated targeting normoxemia compared with hyperoxemia may reduce mortality at longest follow-up (0.73 [0.57-0.95]) but this estimate had very low certainty. There was no difference in mortality between targeting relative hypoxemia or normoxemia (1.20 [0.83-1.73]). CONCLUSIONS: This systematic review and meta-analysis identified possible increased mortality with liberal oxygen targeting strategies and no difference in morbidity between high or low oxygen targets in mechanically ventilated adults. Findings were limited by substantial heterogeneity in study methodology and further research is urgently required to define optimal oxygen therapy targets.

7.
Front Physiol ; 13: 827235, 2022.
Article En | MEDLINE | ID: mdl-35295581

Introduction: Nitrate supplementation in the form of beetroot juice (BRJ) ingestion has been shown to improve exercise tolerance during acute hypoxia, but its effect on exercise physiology remains unstudied during sustained terrestrial high altitude exposure. We hypothesized that performing exercise at high altitude would lower circulating nitrate and nitrite levels and that BRJ ingestion would reverse this phenomenon while concomitantly improving key determinants of aerobic exercise performance. Methods: Twenty seven healthy volunteers (21 male) underwent a series of exercise tests at sea level (SL, London, 75 m) and again after 5-8 days at high altitude (HA, Capanna Regina Margherita or "Margherita Hut," 4,559 m). Using a double-blind protocol, participants were randomized to consume a beetroot/fruit juice beverage (three doses per day) with high levels of nitrate (∼0.18 mmol/kg/day) or a nitrate-depleted placebo (∼11.5 µmoles/kg/day) control drink, from 3 days prior to the exercise trials until completion. Submaximal constant work rate cycle tests were performed to determine exercise efficiency and a maximal incremental ramp exercise test was undertaken to measure aerobic capacity, using breath-by-breath pulmonary gas exchange measurements throughout. Concentrations of nitrate, nitrite and nitrosation products were quantified in plasma samples collected at 5 timepoints during the constant work rate tests. Linear mixed modeling was used to analyze data. Results: At both SL and HA, plasma nitrate concentrations were elevated in the nitrate supplementation group compared to placebo (P < 0.001) but did not change throughout increasing exercise work rate. Delta exercise efficiency was not altered by altitude exposure (P = 0.072) or nitrate supplementation (P = 0.836). V̇O2peak decreased by 24% at high altitude (P < 0.001) and was lower in the nitrate-supplemented group at both sea level and high altitude compared to placebo (P = 0.041). Dietary nitrate supplementation did not alter other peak exercise variables or oxygen consumption at anaerobic threshold. Circulating nitrite and S-nitrosothiol levels unexpectedly rose in a few individuals right after cessation of exercise at high altitude. Conclusion: Whilst regularly consumed during an 8 days expedition to terrestrial high altitude, nitrate supplementation did not alter exercise efficiency and other exercise physiological variables, except decreasing V̇O2peak. These results and those of others question the practical utility of BRJ consumption during prolonged altitude exposure.

9.
Antioxid Redox Signal ; 35(14): 1226-1268, 2021 11 10.
Article En | MEDLINE | ID: mdl-33985343

Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.


COVID-19 Drug Treatment , COVID-19/immunology , Pandemics , COVID-19/diagnosis , Humans , Oxidation-Reduction
10.
J Intensive Care Soc ; 22(4): 280-287, 2021 Nov.
Article En | MEDLINE | ID: mdl-35154365

BACKGROUND: Despite oxygen being the commonest drug administered to critically ill patients we do not know which oxygen saturation (SpO2) target results in optimal survival outcomes in those receiving mechanical ventilation. We therefore conducted a feasibility randomised controlled trial in the United Kingdom (UK) to assess whether it would be possible to host a larger national multi-centre trial to evaluate oxygenation targets in mechanically ventilated patients. METHODS: We set out to recruit 60 participants across two sites into a trial in which they were randomised to receive conservative oxygenation (SpO2 88-92%) or usual care (control - SpO2 ≥96%). The primary outcome was feasibility; factors related to safety and clinical outcomes were also assessed. RESULTS: A total of 34 patients were recruited into the study until it was stopped due to time constraints. A number of key barriers to success were identified during the course of the study. The conservative oxygenation intervention was feasible and appeared to be safe in this small patient cohort and it achieved wide separation of the median time-weighted average (IQR) SpO2 at 91% (90-92%) in conservative oxygenation group versus 97% (96-97%) in control group. CONCLUSION: Whilst conservative oxygenation was a feasible and safe intervention which achieved clear group separation in oxygenation levels, the model used in this trial will require alterations to improve future participant recruitment rates in the UK.

11.
Br J Anaesth ; 126(3): 622-632, 2021 Mar.
Article En | MEDLINE | ID: mdl-33246583

BACKGROUND: The fraction of inspired oxygen (FiO2) administered during general anaesthesia varies widely despite international recommendations to administer FiO2 0.8 to all anaesthetised patients to reduce surgical site infections (SSIs). Anaesthetists remain concerned that high FiO2 administration intraoperatively may increase harm, possibly through increased oxidative damage and inflammation, resulting in more complications and worse outcomes. In previous systematic reviews associations between FiO2 and SSIs have been inconsistent, but none have examined how FiO2 affects perioperative oxidative stress. We aimed to address this uncertainty by reviewing the available literature. METHODS: EMBASE, MEDLINE, and Cochrane databases were searched from inception to March 9, 2020 for RCTs comparing higher with lower perioperative FiO2 and quantifying oxidative stress in adults undergoing noncardiac surgery. Candidate studies were independently screened by two reviewers and references hand-searched. Methodological quality was assessed using the Cochrane Collaboration Risk of Bias tool. RESULTS: From 19 438 initial results, seven trials (n=422) were included. Four studies reported markers of oxidative stress during Caesarean section (n=328) and three reported oxidative stress during elective colon surgery (n=94). Risk of bias was low (four studies) to moderate (three studies). Pooled results suggested high FiO2 was associated with greater malondialdehyde, protein-carbonyl concentrations and reduced xanthine oxidase concentrations, together with reduced antioxidant markers such as superoxide dismutase and total sulfhydryl levels although total antioxidant status was unchanged. CONCLUSIONS: Higher FiO2 may be associated with elevated oxidative stress during surgery. However, limited studies have specifically reported biomarkers of oxidation. Given the current clinical controversy concerning perioperative oxygen therapy, further research is urgently needed in this area.


Cesarean Section/methods , Oxidative Stress , Oxygen Inhalation Therapy/methods , Oxygen/administration & dosage , Anesthesia, General , Dose-Response Relationship, Drug , Humans , Perioperative Period , Surgical Wound Infection/prevention & control
12.
Cochrane Database Syst Rev ; 9: CD013708, 2020 09 01.
Article En | MEDLINE | ID: mdl-32870512

BACKGROUND: Supplemental oxygen is frequently administered to patients with acute respiratory distress syndrome (ARDS), including ARDS secondary to viral illness such as coronavirus disease 19 (COVID-19). An up-to-date understanding of how best to target this therapy (e.g. arterial partial pressure of oxygen (PaO2) or peripheral oxygen saturation (SpO2) aim) in these patients is urgently required. OBJECTIVES: To address how oxygen therapy should be targeted in adults with ARDS (particularly ARDS secondary to COVID-19 or other respiratory viruses) and requiring mechanical ventilation in an intensive care unit, and the impact oxygen therapy has on mortality, days ventilated, days of catecholamine use, requirement for renal replacement therapy, and quality of life. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, CENTRAL, MEDLINE, and Embase from inception to 15 May 2020 for ongoing or completed randomized controlled trials (RCTs). SELECTION CRITERIA: Two review authors independently assessed all records in accordance with standard Cochrane methodology for study selection. We included RCTs comparing supplemental oxygen administration (i.e. different target PaO2 or SpO2 ranges) in adults with ARDS and receiving mechanical ventilation in an intensive care setting. We excluded studies exploring oxygen administration in patients with different underlying diagnoses or those receiving non-invasive ventilation, high-flow nasal oxygen, or oxygen via facemask. DATA COLLECTION AND ANALYSIS: One review author performed data extraction, which a second review author checked. We assessed risk of bias in included studies using the Cochrane 'Risk of bias' tool. We used the GRADE approach to judge the certainty of the evidence for the following outcomes; mortality at longest follow-up, days ventilated, days of catecholamine use, and requirement for renal replacement therapy. MAIN RESULTS: We identified one completed RCT evaluating oxygen targets in patients with ARDS receiving mechanical ventilation in an intensive care setting. The study randomized 205 mechanically ventilated patients with ARDS to either conservative (PaO2 55 to 70 mmHg, or SpO2 88% to 92%) or liberal (PaO2 90 to 105 mmHg, or SpO2 ≥ 96%) oxygen therapy for seven days. Overall risk of bias was high (due to lack of blinding, small numbers of participants, and the trial stopping prematurely), and we assessed the certainty of the evidence as very low. The available data suggested that mortality at 90 days may be higher in those participants receiving a lower oxygen target (odds ratio (OR) 1.83, 95% confidence interval (CI) 1.03 to 3.27). There was no evidence of a difference between the lower and higher target groups in mean number of days ventilated (14.0, 95% CI 10.0 to 18.0 versus 14.5, 95% CI 11.8 to 17.1); number of days of catecholamine use (8.0, 95% CI 5.5 to 10.5 versus 7.2, 95% CI 5.9 to 8.4); or participants receiving renal replacement therapy (13.7%, 95% CI 5.8% to 21.6% versus 12.0%, 95% CI 5.0% to 19.1%). Quality of life was not reported. AUTHORS' CONCLUSIONS: We are very uncertain as to whether a higher or lower oxygen target is more beneficial in patients with ARDS and receiving mechanical ventilation in an intensive care setting. We identified only one RCT with a total of 205 participants exploring this question, and rated the risk of bias as high and the certainty of the findings as very low. Further well-conducted studies are urgently needed to increase the certainty of the findings reported here. This review should be updated when more evidence is available.


Betacoronavirus , Coronavirus Infections/complications , Intensive Care Units , Oxygen/administration & dosage , Pneumonia, Viral/complications , Respiration, Artificial , Respiratory Distress Syndrome/therapy , Bias , COVID-19 , Catecholamines/therapeutic use , Conservative Treatment , Humans , Odds Ratio , Pandemics , Renal Replacement Therapy/statistics & numerical data , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Self Concept , Time Factors
13.
Nitric Oxide ; 94: 27-35, 2020 01 01.
Article En | MEDLINE | ID: mdl-31604146

Native highlanders (e.g. Sherpa) demonstrate remarkable hypoxic tolerance, possibly secondary to higher levels of circulating nitric oxide (NO) and increased microcirculatory blood flow. As part of the Xtreme Alps study (a randomised placebo-controlled trial of dietary nitrate supplementation under field conditions of hypobaric hypoxia), we investigated whether dietary supplementation with nitrate could improve NO availability and microvascular blood flow in lowlanders. Plasma measurements of nitrate, nitrite and nitroso species were performed together with measurements of sublingual (sidestream dark-field camera) and forearm blood flow (venous occlusion plethysmography) in 28 healthy adult volunteers resident at 4559 m for 1 week; half receiving a beetroot-based high-nitrate supplement and half receiving an identically-tasting low nitrate 'placebo'. Dietary supplementation increased plasma nitrate concentrations 4-fold compared to the placebo group, both at sea level (SL; 19.2 vs 76.9 µM) and at day 5 (D5) of high altitude (22.9 vs 84.3 µM, p < 0.001). Dietary nitrate supplementation also significantly increased both plasma nitrite (0.78 vs. 0.86 µM SL, 0.31 vs. 0.41 µM D5, p = 0.03) and total nitroso product (11.3 vs. 19.7 nM SL, 9.7 vs. 12.3 nM D5, p < 0.001) levels both at sea level and at 4559 m. However, plasma nitrite concentrations were more than 50% lower at 4559 m compared to sea level in both treatment groups. Despite these significant changes, dietary nitrate supplementation had no effect on any measured read-outs of sublingual or forearm blood flow, even when environmental hypoxia was experimentally reversed using supplemental oxygen. In conclusion, dietary nitrate supplementation does not improve microcirculatory function at 4559 m.


Microcirculation/physiology , Nitrates/blood , Adult , Altitude Sickness/physiopathology , Blood Flow Velocity , Dietary Supplements , Female , Humans , Male , Nitrates/administration & dosage , Nitrates/metabolism , Nitrites/blood , Nitroso Compounds/blood , Young Adult
15.
Redox Biol ; 21: 101113, 2019 02.
Article En | MEDLINE | ID: mdl-30738322

The chemical and functional interactions between Reactive Oxygen (ROS), Nitrogen (RNS) and Sulfur (RSS) species allow organisms to detect and respond to metabolic and environmental stressors, such as exercise and altitude exposure. Whether redox markers and constituents of this 'Reactive Species Interactome' (RSI) differ in concentration between arterial and venous blood is unknown. We hypothesised that such measurements may provide useful insight into metabolic/redox regulation at the whole-body level and would be consistent between individuals exposed to identical challenges. An exploratory study was performed during the Xtreme Alps expedition in 2010 in which four healthy individuals (2 male, 2 female) underwent paired arterial and central venous blood sampling before, during and after performance of a constant-work-rate cardiopulmonary exercise test, at sea level and again at 4559 m. Unexpectedly, plasma total free thiol and free cysteine concentrations remained substantially elevated at altitude throughout exercise with minimal arteriovenous gradients. Free sulfide concentrations changed only modestly upon combined altitude/exercise stress, whereas bound sulfide levels were lower at altitude than sea-level. No consistent signal indicative of the expected increased oxidative stress and nitrate→nitrite→NO reduction was observed with 4-hydroxynonenal, isoprostanes, nitrate, nitrite, nitroso species and cylic guanosine monophosphate. However, the observed arteriovenous concentration differences revealed a dynamic pattern of response that was unique to each participant. This novel redox metabolomic approach of obtaining quantifiable 'metabolic signatures' to a defined physiological challenge could potentially offer new avenues for personalised medicine.


Biomarkers/blood , Metabolomics , Oxidation-Reduction , Blood Gas Analysis , Exercise , Female , Humans , Male , Metabolomics/methods , Reactive Oxygen Species/metabolism , Stress, Physiological
17.
Perioper Med (Lond) ; 7: 17, 2018.
Article En | MEDLINE | ID: mdl-30062007

Background: Considerable controversy remains about how much oxygen patients should receive during surgery. The 2016 World Health Organization (WHO) guidelines recommend that intubated patients receive a fractional inspired oxygen concentration (FIO2) of 0.8 throughout abdominal surgery to reduce the risk of surgical site infection. However, this recommendation has been widely criticised by anaesthetists and evidence from other clinical contexts has suggested that giving a high concentration of oxygen might worsen patient outcomes. This retrospective multi-centre observational study aimed to ascertain intraoperative oxygen administration practice by anaesthetists across parts of the UK. Methods: Patients undergoing general anaesthesia with an arterial catheter in situ across hospitals affiliated with two anaesthetic trainee audit networks (PLAN, SPARC) were eligible for inclusion unless undergoing cardiopulmonary bypass. Demographic and intraoperative oxygenation data, haemoglobin saturation and positive end-expiratory pressure were retrieved from anaesthetic charts and arterial blood gases (ABGs) over five consecutive weekdays in April and May 2017. Results: Three hundred seventy-eight patients from 29 hospitals were included. Median age was 66 years, 205 (54.2%) were male and median ASA grade was 3. One hundred eight (28.6%) were emergency cases. An anticipated difficult airway or raised BMI was documented preoperatively in 31 (8.2%) and 45 (11.9%) respectively. Respiratory or cardiac comorbidity was documented in 103 (27%) and 83 (22%) respectively. SpO2 < 96% was documented in 83 (22%) patients, with 7 (1.9%) patients desaturating < 88% at any point intraoperatively. The intraoperative FIO2 ranged from 0.25 to 1.0, and median PaO2/FIO2 ratios for the first four arterial blood gases taken in each case were 24.6/0.5, 23.4/0.49, 25.7/0.46 and 25.4/0.47 respectively. Conclusions: Intraoperative oxygenation currently varies widely. An intraoperative FIO2 of 0.5 currently represents standard intraoperative practice in the UK, with surgical patients often experiencing moderate levels of hyperoxaemia. This differs from both WHO's recommendation of using an FIO2 of 0.8 intraoperatively, and also, the value most previous interventional oxygen therapy trials have used to represent standard care (typically FIO2 = 0.3). These findings should be used to aid the design of future intraoperative oxygen studies.

19.
Nitric Oxide ; 71: 57-68, 2017 Dec 01.
Article En | MEDLINE | ID: mdl-29042272

Nitric oxide (NO) production plays a central role in conferring tolerance to hypoxia. Tibetan highlanders, successful high-altitude dwellers for millennia, have higher circulating nitrate and exhaled NO (ENO) levels than native lowlanders. Since nitrate itself can reduce the oxygen cost of exercise in normoxia it may confer additional benefits at high altitude. Xtreme Alps was a double-blinded randomised placebo-controlled trial to investigate how dietary nitrate supplementation affects physiological responses to hypoxia in 28 healthy adult volunteers resident at 4559 m for 1 week; 14 receiving a beetroot-based high-nitrate supplement and 14 receiving a low-nitrate 'placebo' of matching appearance/taste. ENO, vital signs and acute mountain sickness (AMS) severity were recorded at sea level (SL) and daily at altitude. Moreover, standard spirometric values were recorded, and saliva and exhaled breath condensate (EBC) collected. There was no significant difference in resting cardiorespiratory variables, peripheral oxygen saturation or AMS score with nitrate supplementation at SL or altitude. Median ENO levels increased from 1.5/3.0  mPa at SL, to 3.5/7.4 mPa after 5 days at altitude (D5) in the low and high-nitrate groups, respectively (p = 0.02). EBC nitrite also rose significantly with dietary nitrate (p = 0.004), 1.7-5.1  µM at SL and 1.6-6.3 µM at D5, and this rise appeared to be associated with increased levels of ENO. However, no significant changes occurred to levels of EBC nitrate or nitrosation products (RXNO). Median salivary nitrite/nitrate concentrations increased from 56.5/786 µM to 333/5,194  µM  with nitrate supplementation at SL, and changed to 85.6/641 µM and 341/4,553 µM on D5. Salivary RXNO rose markedly with treatment at SL from 0.55 µM to 5.70 µM. At D5 placebo salivary RXNO had increased to 1.90 µM whilst treatment RXNO decreased to 3.26 µM. There was no association with changes in any observation variables or AMS score. In conclusion, dietary nitrate supplementation is well tolerated at altitude and significantly increases pulmonary NO availability and both salivary and EBC NO metabolite concentrations. Surprisingly, this is not associated with changes in hemodynamics, oxygen saturation or AMS development.


Altitude Sickness/prevention & control , Dietary Supplements , Lung/physiology , Nitrates/therapeutic use , Adult , Beta vulgaris , Female , Fruit and Vegetable Juices , Humans , Male , Nitrates/administration & dosage , Nitrates/analysis , Nitrates/metabolism , Nitric Oxide/analysis , Nitric Oxide/metabolism , Nitrites/analysis , Nitrites/metabolism , Oxygen/blood , Respiratory Rate/physiology , Saliva/metabolism
...