Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39042155

RESUMEN

The pharmacological treatment of epilepsy is often complex due to the lack of efficacy in many patients and profound side effects from current drugs, including sedation, motor impairment, and teratogenesis. In the quest for new antiepileptic drugs, animal venoms offer a valuable source of neuroactive molecules targeting ion channels and neurotransmitter receptors. This study investigates the antiepileptic potential of compounds isolated from the venom of the Parawixia bistriata spider. One compound, designated Parawixin-11, demonstrated significant anticonvulsant effects when injected into the cerebral ventricle in a dose-response manner. It effectively countered seizures induced by bicuculline (ED50 0.16 µg/animal), pentylenetetrazole (ED50 0.08 µg/animal), strychnine (ED50 0.05 µg/animal), pilocarpine (ED50 0.10 µg/animal), and NMDA (ED50 0.008 µg/animal). We also assessed whether intracerebroventricular administration of Parawixin-11 caused motor or cognitive impairments in rats using the open field, rotarod, and Morris water maze tests. No differences in exploration or movement were observed with doses of 0.3, 0.2, or 0.1 µg of Parawixin-11. Although there was an increased latency to find the platform during the acquisition phase of the Morris water maze test, no differences in spatial memory retention were noted. Given Parawixin-11's potency against NMDA-induced seizures, we hypothesize that it may modulate the glutamatergic system, aligning with the mechanisms of several spider-derived polyamines.

2.
Brain Behav Immun Health ; 31: 100654, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37449286

RESUMEN

Sepsis is associated with numerous physiological and biochemical abnormalities that result in a life-threatening condition. The involvement of the Central Nervous System (CNS) during sepsis has received considerable attention, especially the hippocampus which plays a key role in the learning and memory processes. The increased interest in this limbic region during systemic inflammation (SI) is related to the number of sepsis survivor patients who have cognitive impairments. A single injection of lipopolysaccharide (LPS)-induced systemic inflammation is the most commonly used murine endotoxemia model because it replicates several pathophysiological changes observed in severe sepsis. Molecular hydrogen (H2) has been used as an anti-inflammatory therapeutic strategy to prevent neuroinflammation. However, the mechanisms by which inhaled H2 mitigate memory loss during SI remains unknown. To understand how H2 acts in the hippocampus, the current study focused on specific mechanisms that may be involved in reducing neuroinflammation in rats during SI. We hypothesized that inhaled H2 decreases LPS-induced hippocampal pro-inflammatory cytokines surges and this effect is associated with reduced memory loss. Using different and integrative approaches, i.e., from hippocampal cells electrophysiology to animal behavior, we report that inhaled H2 decreased LPS-induced peripheral and hippocampal inflammation, decreased microglial and astrocytic activation, lessen memory loss without affecting long-term potentiation (LTP). To our knowledge, this is the first evidence showing that inhaled H2 reduces hippocampal microglial and glial cells inflammation, which may be associated with a reduced memory impairment induced by SI.

3.
Brain Commun ; 5(1): fcad016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844150

RESUMEN

The ability of venom-derived peptides to disrupt physiological processes in mammals provides an exciting source for pharmacological development. Our research group has identified a new class of neuroactive peptides from the venom of a Brazilian social wasp, Polybia occidentalis, with the potential pharmacological profile to treat epilepsies. The study was divided into five phases: Phase 1 concerned the extraction, isolation and purification of Occidentalin-1202(n) from the crude venom, followed by the synthesis of an identical analogue peptide, named Occidentalin-1202(s). In Phase 2, we described the effects of both peptides in two acute models of epilepsy-kainic acid and pentylenetetrazole-induced model of seizures-and measured estimated ED50 and therapeutic index values, electroencephalographic studies and C-fos evaluation. Phase 3 was a compilation of advanced tests performed with Occidentalin-1202(s) only, reporting histopathological features and its performance in the pilocarpine-induced status epilepticus. After the determination of the antiepileptic activity of Occidentalin-1202(s), Phase 4 consisted of evaluating its potential adverse effects, after chronic administration, on motor coordination (Rotarod) and cognitive impairment (Morris water maze) tests. Finally, in Phase 5, we proposed a mechanism of action using computational models with kainate receptors. The new peptide was able to cross the blood-brain barrier and showed potent antiseizure effects in acute (kainic acid and pentylenetetrazole) and chronic (temporal lobe epilepsy model induced by pilocarpine) models. Motor and cognitive behaviour were not adversely affected, and a potential neuroprotective effect was observed. Occidentalin-1202 can be a potent blocker of the kainate receptor, as assessed by computational analysis, preventing glutamate and kainic acid from binding to the receptor's active site. Occidentalin-1202 is a peptide with promising applicability to treat epilepsy and can be considered an interesting drug model for the development of new medicines.

4.
Front Behav Neurosci ; 15: 611902, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643007

RESUMEN

Cannabinoids and Cannabis-derived compounds have been receiving especial attention in the epilepsy research scenario. Pharmacological modulation of endocannabinoid system's components, like cannabinoid type 1 receptors (CB1R) and their bindings, are associated with seizures in preclinical models. CB1R expression and functionality were altered in humans and preclinical models of seizures. Additionally, Cannabis-derived compounds, like cannabidiol (CBD), present anticonvulsant activity in humans and in a great variety of animal models. Audiogenic seizures (AS) are induced in genetically susceptible animals by high-intensity sound stimulation. Audiogenic strains, like the Genetically Epilepsy Prone Rats, Wistar Audiogenic Rats, and Krushinsky-Molodkina, are useful tools to study epilepsy. In audiogenic susceptible animals, acute acoustic stimulation induces brainstem-dependent wild running and tonic-clonic seizures. However, during the chronic protocol of AS, the audiogenic kindling (AuK), limbic and cortical structures are recruited, and the initially brainstem-dependent seizures give rise to limbic seizures. The present study reviewed the effects of pharmacological modulation of the endocannabinoid system in audiogenic seizure susceptibility and expression. The effects of Cannabis-derived compounds in audiogenic seizures were also reviewed, with especial attention to CBD. CB1R activation, as well Cannabis-derived compounds, induced anticonvulsant effects against audiogenic seizures, but the effects of cannabinoids modulation and Cannabis-derived compounds still need to be verified in chronic audiogenic seizures. The effects of cannabinoids and Cannabis-derived compounds should be further investigated not only in audiogenic seizures, but also in epilepsy related comorbidities present in audiogenic strains, like anxiety, and depression.

5.
Cell Mol Neurobiol ; 41(4): 751-763, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32445041

RESUMEN

Exposure to noise produces cognitive and emotional disorders, and recent studies have shown that auditory stimulation or deprivation affects hippocampal function. Previously, we showed that exposure to high-intensity sound (110 dB, 1 min) strongly inhibits Schaffer-CA1 long-term potentiation (LTP). Here we investigated possible mechanisms involved in this effect. We found that exposure to 110 dB sound activates c-fos expression in hippocampal CA1 and CA3 neurons. Although sound stimulation did not affect glutamatergic or GABAergic neurotransmission in CA1, it did depress the level of brain-derived neurotrophic factor (BDNF), which is involved in promoting hippocampal synaptic plasticity. Moreover, perfusion of slices with BDNF rescued LTP in animals exposed to sound stimulation, whereas BDNF did not affect LTP in sham-stimulated rats. Furthermore, LM22A4, a TrkB receptor agonist, also rescued LTP from sound-stimulated animals. Our results indicate that depression of hippocampal BDNF mediates the inhibition of LTP produced by high-intensity sound stimulation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/deficiencia , Hipocampo/fisiología , Potenciación a Largo Plazo , Sonido , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA1 Hipocampal/fisiología , Ácido Glutámico/metabolismo , Potenciación a Largo Plazo/fisiología , Masculino , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células Piramidales/metabolismo , Ratas Wistar , Sinapsis/fisiología , Transmisión Sináptica , Ácido gamma-Aminobutírico/metabolismo
6.
J Biochem Mol Toxicol ; 34(11): e22578, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32666660

RESUMEN

ß-Lactam antibiotics such as ceftriaxone, are potent stimulators of the expression of l-glutamate transporter GLT-1 and may exert neuroprotective effects when chronically used in rats and mice. In this study, we used two animal models to test the neurological effect of subchronic treatment with ceftriaxone: experimental acute glaucoma in Wistar rats and induction of acute seizures with pentylenetetrazole in mice. We also assessed the performance of mice in the rotarod to calculate therapeutic indexes and exploratory activity in the open field. Our results showed that subchronic use of ceftriaxone was neuroprotective in both models, reducing injury in acute ischemia and ischemia/reperfusion in specific layers of retina and leading to a decrease in the seizure severity score. In behavioral experiments, we observed that ceftriaxone increased hyperactivity followed by a decrease in exploratory behavior in the open field, and there was no motor impairment in the rotarod test. We conclude that ceftriaxone may be useful as a tool in the development of new neuroprotective drugs targeting diseases which present a possible dysfunction in the balance of glutamatergic neurotransmission.


Asunto(s)
Antibacterianos/administración & dosificación , Ceftriaxona/administración & dosificación , Convulsivantes/farmacología , Glaucoma/fisiopatología , Fármacos Neuroprotectores/administración & dosificación , Convulsiones/prevención & control , Tetrazoles/farmacología , Enfermedad Aguda , Animales , Conducta Animal/efectos de los fármacos , Masculino , Ratones , Ratas , Ratas Wistar
7.
Int J Neural Syst ; 30(5): 2050022, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32285725

RESUMEN

Wistar Audiogenic Rats (WARs) are genetically susceptible to sound-induced seizures that start in the brainstem and, in response to repetitive stimulation, spread to limbic areas, such as hippocampus. Analysis of the distribution of interevent intervals of GABAergic inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal cells showed a monoexponential trend in Wistar rats, suggestive of a homogeneous population of synapses, but a biexponential trend in WARs. Based on this, we hypothesize that there are two populations of GABAergic synaptic release sites in CA1 pyramidal neurons from WARs. To address this hypothesis, we used a well-established neuronal computational model of a CA1 pyramidal neuron previously developed to replicate physiological properties of these cells. Our simulations replicated the biexponential trend only when we decreased the release frequency of synaptic currents by a factor of six in at least 40% of distal synapses. Our results suggest that almost half of the GABAergic synapses of WARs have a drastically reduced spontaneous release frequency. The computational model was able to reproduce the temporal dynamics of GABAergic inhibition that could underlie susceptibility to the spread of seizures.


Asunto(s)
Región CA1 Hipocampal/fisiopatología , Epilepsia Refleja/fisiopatología , Potenciales Postsinápticos Inhibidores/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Modelos Animales de Enfermedad , Ratas , Ratas Wistar
8.
Front Neurol ; 10: 1007, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632331

RESUMEN

The Wistar Audiogenic Rat (WAR) strain is a genetic model of epilepsy, specifically brainstem-dependent tonic-clonic seizures, triggered by acute auditory stimulation. Chronic audiogenic seizures (audiogenic kindling) mimic temporal lobe epilepsy, with significant participation of the hippocampus, amygdala, and cortex. The objective of the present study was to characterize the mitochondrial energy metabolism in hippocampus and cortex of WAR and verify its relationship with seizure severity. Hippocampus of WAR naïve (no seizures) presented higher oxygen consumption in respiratory states related to the maximum capacities of phosphorylation and electron transfer system, elevated mitochondrial density, lower GSH/GSSG and catalase activity, and higher protein carbonyl and lactate contents, compared with their Wistar counterparts. Audiogenic kindling had no adding functional effect in WAR, but in Wistar, it induced the same alterations observed in the audiogenic strain. In the cortex, WAR naïve presented elevated mitochondrial density, lower GSH/GSSG and catalase activity, and higher protein carbonyl levels. Chronic acoustic stimulation in Wistar induced the same alterations in cortex and hippocampus. Mainly in the hippocampus, WAR naïve presented elevated mRNA expression of glucose, lactate and excitatory amino acids transporters, several glycolytic enzymes, lactate dehydrogenase, and Na+/K+ ATPase in neurons and in astrocytes. In vivo treatment with mitochondrial uncoupler 2,4-dinitrophenol (DNP) or N-acetylcysteine (NAC) in WAR had no effect on mitochondrial metabolism, but lowered oxidative stress. Unlike DNP, NAC downregulated all enzyme genes involved in glucose and lactate uptake, and metabolism in neurons and astrocytes. Additionally, it was able to reduce brainstem seizure severity in WAR. In conclusion, in WAR naïve animals, both cerebral cortex and hippocampus display elevated mitochondrial density and/or activity associated with oxidative damage, glucose and lactate metabolism pathways upregulation, and increased Na+/K+ ATPase mRNA expression. Only in vivo treatment with NAC was able to reduce seizure severity of kindled WARs, possibly via down regulation of glucose/lactate metabolism. Taken together, our results are a clear contribution to the field of mitochondrial metabolism associated to epileptic seizures.

9.
Artículo en Inglés | MEDLINE | ID: mdl-31131006

RESUMEN

BACKGROUND: Studies on toad poison are relevant since they are considered a good source of toxins that act on different biological systems. Among the molecules found in the toad poison, it can be highlighted the cardiotonic heterosides, which have a known mechanism that inhibit Na+/K+-ATPase enzyme. However, these poisons have many other molecules that may have important biological actions. Therefore, this work evaluated the action of the low molecular weight components from Rhinella schneideri toad poison on Na+/K+-ATPase and their anticonvulsive and / or neurotoxic effects, in order to detect molecules with actions of biotechnological interest. METHODS: Rhinella schneideri toad (male and female) poison was collected by pressuring their parotoid glands and immediately dried and stored at -20 °C. The poison was dialysed and the water containing the low molecular mass molecules (< 8 kDa) that permeate the dialysis membrane was collected, frozen and lyophilized, resulting in the sample used in the assays, named low molecular weight fraction (LMWF). Na+/K+ ATPase was isolated from rabbit kidneys and enzyme activity assays performed by the quantification of phosphate released due to enzyme activity in the presence of LMWF (1.0; 10; 50 and 100 µg/mL) from Rhinella schneideri poison. Evaluation of the L-Glutamate (L-Glu) excitatory amino acid uptake in brain-cortical synaptosomes of Wistar rats was performed using [3H]L-glutamate and different concentration of LMWF (10-5 to 10 µg/µL). Anticonvulsant assays were performed using pentylenetetrazole (PTZ) and N-methyl-D-aspartate (NMDA) to induce seizures in Wistar rats (n= 6), which were cannulated in the lateral ventricle and treated with different concentration of LMWF (0.25; 0.5; 1.0; 2.0; 3.0 and 4.0 µg/µL) 15 min prior to the injection of the seizure agent. RESULTS: LMWF induced a concentration-dependent inhibition of Na+/K+-ATPase (IC50% = 107.5 µg/mL). The poison induces an increased uptake of the amino acid L-glutamate in brain-cortical synaptosomes of Wistar rats. This increase in the L-glutamate uptake was observed mainly at the lowest concentrations tested (10-5 to 10-2 µg/µL). In addition, this fraction showed a very relevant central neuroprotection on seizures induced by PTZ and NMDA. CONCLUSIONS: LMWF from Rhinella schneideri poison has low molecular weight compounds, which were able to inhibit Na+/K+-ATPase activity, increase the L-glutamate uptake and reduced seizures induced by PTZ and NMDA. These results showed that LMWF is a rich source of components with biological functions of high medical and scientific interest.

10.
PLoS One ; 14(5): e0210451, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31067215

RESUMEN

Exposure to loud sounds is related to harmful mental and systemic effects. The hippocampal function can be affected to either high-intensity sound exposure or long-term sound deprivation. We previously showed that hippocampal long-term potentiation (LTP) is inhibited after ten days of daily exposure to 2 minutes of high-intensity noise (110 dB), in the hippocampi of Wistar rats. Here we investigated how the glutamatergic and GABAergic neurotransmission mediated by ionotropic receptors is affected by the same protocol of high-intensity sound exposure. We found that while the glutamatergic transmission both by AMPA/kainate and NMDA receptors in the Schaffer-CA1 synapses is unaffected by long-term exposure to high-intensity sound, the amplitude of the inhibitory GABAergic currents is potentiated, but not the frequency of both spontaneous and miniature currents. We conclude that after prolonged exposure to short periods of high-intensity sound, GABAergic transmission is potentiated in the hippocampal CA1 pyramidal neurons. This effect could be an essential factor for the reduced LTP in the hippocampi of these animals after high-intensity sound exposure. We conclude that prolonged exposure to high- intensity sound could affect hippocampal inhibitory transmission and consequently, its function.


Asunto(s)
Estimulación Acústica , Neuronas GABAérgicas/metabolismo , Hipocampo/fisiología , Potenciación a Largo Plazo , Inhibición Neural , Células Piramidales/metabolismo , Sonido , Animales , Región CA1 Hipocampal/fisiología , Glutamatos/metabolismo , Masculino , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo
11.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 25: e148418, Apr. 18, 2019. graf
Artículo en Inglés | VETINDEX | ID: vti-19273

RESUMEN

Background:Studies on toad poison are relevant since they are considered a good source of toxins that act on different biological systems. Among the molecules found in the toad poison, it can be highlighted the cardiotonic heterosides, which have a known mechanism that inhibit Na+/K+-ATPase enzyme. However, these poisons have many other molecules that may have important biological actions. Therefore, this work evaluated the action of the low molecular weight components from Rhinella schneideri toad poison on Na+/K+-ATPase and their anticonvulsive and / or neurotoxic effects, in order to detect molecules with actions of biotechnological interest.Methods:Rhinella schneideri toad (male and female) poison was collected by pressuring their parotoid glands and immediately dried and stored at -20 °C. The poison was dialysed and the water containing the low molecular mass molecules (< 8 kDa) that permeate the dialysis membrane was collected, frozen and lyophilized, resulting in the sample used in the assays, named low molecular weight fraction (LMWF). Na+/K+ ATPase was isolated from rabbit kidneys and enzyme activity assays performed by the quantification of phosphate released due to enzyme activity in the presence of LMWF (1.0; 10; 50 and 100 µg/mL) from Rhinella schneideri poison. Evaluation of the L-Glutamate (L-Glu) excitatory amino acid uptake in brain-cortical synaptosomes of Wistar rats was performed using [3H]L-glutamate and different concentration of LMWF (10-5 to 10 µg/µL). Anticonvulsant assays were performed using pentylenetetrazole (PTZ) and N-methyl-D-aspartate (NMDA) to induce seizures in Wistar rats (n= 6), which were cannulated in the lateral ventricle and treated with different concentration of LMWF (0.25; 0.5; 1.0; 2.0; 3.0 and 4.0 µg/µL) 15 min prior to the injection of the seizure agent.Results:LMWF induced a concentration-dependent inhibition of Na+/K+-ATPase (IC50% = 107.5 μg/mL)...(AU)

12.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;25: e148418, 2019. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1002500

RESUMEN

Studies on toad poison are relevant since they are considered a good source of toxins that act on different biological systems. Among the molecules found in the toad poison, it can be highlighted the cardiotonic heterosides, which have a known mechanism that inhibit Na+/K+-ATPase enzyme. However, these poisons have many other molecules that may have important biological actions. Therefore, this work evaluated the action of the low molecular weight components from Rhinella schneideri toad poison on Na+/K+-ATPase and their anticonvulsive and / or neurotoxic effects, in order to detect molecules with actions of biotechnological interest. Methods: Rhinella schneideri toad (male and female) poison was collected by pressuring their parotoid glands and immediately dried and stored at -20 °C. The poison was dialysed and the water containing the low molecular mass molecules (< 8 kDa) that permeate the dialysis membrane was collected, frozen and lyophilized, resulting in the sample used in the assays, named low molecular weight fraction (LMWF). Na+/K+ ATPase was isolated from rabbit kidneys and enzyme activity assays performed by the quantification of phosphate released due to enzyme activity in the presence of LMWF (1.0; 10; 50 and 100 µg/mL) from Rhinella schneideri poison. Evaluation of the L-Glutamate (L-Glu) excitatory amino acid uptake in brain-cortical synaptosomes of Wistar rats was performed using [3H]L-glutamate and different concentration of LMWF (10-5 to 10 µg/µL). Anticonvulsant assays were performed using pentylenetetrazole (PTZ) and N-methyl-D-aspartate (NMDA) to induce seizures in Wistar rats (n= 6), which were cannulated in the lateral ventricle and treated with different concentration of LMWF (0.25; 0.5; 1.0; 2.0; 3.0 and 4.0 µg/µL) 15 min prior to the injection of the seizure agent. Results: LMWF induced a concentration-dependent inhibition of Na+/K+-ATPase (IC50% = 107.5 μg/mL). The poison induces an increased uptake of the amino acid L-glutamate in brain-cortical synaptosomes of Wistar rats. This increase in the L-glutamate uptake was observed mainly at the lowest concentrations tested (10-5 to 10-2 µg/µL). In addition, this fraction showed a very relevant central neuroprotection on seizures induced by PTZ and NMDA. Conclusions: LMWF from Rhinella schneideri poison has low molecular weight compounds, which were able to inhibit Na+/K+-ATPase activity, increase the L-glutamate uptake and reduced seizures induced by PTZ and NMDA. These results showed that LMWF is a rich source of components with biological functions of high medical and scientific interest.(AU)


Asunto(s)
Animales , Venenos , Sinaptosomas , Bufo rana , Neuroprotección , Anticonvulsivantes , Ácido Glutámico , Peso Molecular
13.
Toxins (Basel) ; 10(12)2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30469496

RESUMEN

Epilepsy is considered as one of the major disabling neuropathologies. Almost one third of adult patients with temporal lobe epilepsy (TLE) do not respond to current antiepileptic drugs (AEDs). Additionally, most AEDs do not have neuroprotective effects against the inherent neurodegenerative process underlying the hippocampal sclerosis on TLE. Dysfunctions in the GABAergic neurotransmission may contribute not only to the onset of epileptic activity but also constitute an important system for therapeutic approaches. Therefore, molecules that enhance GABA inhibitory effects could open novel avenues for the understanding of epileptic plasticity and for drug development. Parawixin2, a compound isolated from Parawixia bistriata spider venom, inhibits both GABA and glycine uptake and has an anticonvulsant effect against a wide range of chemoconvulsants. The neuroprotective potential of Parawixin2 was analyzed in a model of TLE induced by a long-lasting Status Epilepticus (SE), and its efficiency was compared to well-known neuroprotective drugs, such as riluzole and nipecotic acid. Neuroprotection was assessed through histological markers for cell density (Nissl), astrocytic reactivity (GFAP) and cell death labeling (TUNEL), which were performed 24 h and 72 h after SE. Parawixin2 treatment resulted in neuroprotective effects in a dose dependent manner at 24 h and 72 h after SE, as well as reduced reactive astrocytes and apoptotic cell death. Based on these findings, Parawixin2 has a great potential to be used as a tool for neuroscience research and as a probe to the development of novel GABAergic neuroprotective agents.


Asunto(s)
Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Venenos de Araña/uso terapéutico , Urea/análogos & derivados , Animales , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Masculino , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas Wistar , Urea/uso terapéutico
14.
Sci Rep ; 8(1): 10412, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29991737

RESUMEN

Despite the many studies focusing on epilepsy, a lot of the basic mechanisms underlying seizure susceptibility are mainly unclear. Here, we studied cellular electrical excitability, as well as excitatory and inhibitory synaptic neurotransmission of CA1 pyramidal neurons from the dorsal hippocampus of a genetic model of epilepsy, the Wistar Audiogenic Rat (WARs) in which limbic seizures appear after repeated audiogenic stimulation. We examined intrinsic properties of neurons, as well as EPSCs evoked by Schaffer-collateral stimulation in slices from WARs and Wistar parental strain. We also analyzed spontaneous IPSCs and quantal miniature inhibitory events. Our data show that even in the absence of previous seizures, GABAergic neurotransmission is reduced in the dorsal hippocampus of WARs. We observed a decrease in the frequency of IPSCs and mIPSCs. Moreover, mIPSCs of WARs had faster rise times, indicating that they probably arise from more proximal synapses. Finally, intrinsic membrane properties, firing and excitatory neurotransmission mediated by both NMDA and non-NMDA receptors are similar to the parental strain. Since GABAergic inhibition towards CA1 pyramidal neurons is reduced in WARs, the inhibitory network could be ineffective to prevent the seizure-dependent spread of hyperexcitation. These functional changes could make these animals more susceptible to the limbic seizures observed during the audiogenic kindling.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Epilepsia Refleja/genética , Epilepsia/genética , Células Piramidales/metabolismo , Animales , Región CA1 Hipocampal/patología , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Epilepsia/patología , Epilepsia Refleja/patología , Humanos , Células Piramidales/patología , Ratas , Convulsiones/genética , Convulsiones/metabolismo , Convulsiones/patología , Sinapsis/genética , Sinapsis/patología , Transmisión Sináptica/genética , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología
15.
Eur J Neurosci ; 47(11): 1401-1413, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29779233

RESUMEN

Afferent neurotransmission to hippocampal pyramidal cells can lead to long-term changes to their intrinsic membrane properties and affect many ion currents. One of the most plastic neuronal currents is the hyperpolarization-activated cationic current (Ih ), which changes in CA1 pyramidal cells in response to many types of physiological and pathological processes, including auditory stimulation. Recently, we demonstrated that long-term potentiation (LTP) in rat hippocampal Schaffer-CA1 synapses is depressed by high-intensity sound stimulation. Here, we investigated whether a long-term high-intensity sound stimulation could affect intrinsic membrane properties of rat CA1 pyramidal neurons. Our results showed that Ih is depressed by long-term high-intensity sound exposure (1 min of 110 dB sound, applied two times per day for 10 days). This resulted in a decreased resting membrane potential, increased membrane input resistance and time constant, and decreased action potential threshold. In addition, CA1 pyramidal neurons from sound-exposed animals fired more action potentials than neurons from control animals; however, this effect was not caused by a decreased Ih . On the other hand, a single episode (1 min) of 110 dB sound stimulation which also inhibits hippocampal LTP did not affect Ih and firing in pyramidal neurons, suggesting that effects on Ih are long-term responses to high-intensity sound exposure. Our results show that prolonged exposure to high-intensity sound affects intrinsic membrane properties of hippocampal pyramidal neurons, mainly by decreasing the amplitude of Ih .


Asunto(s)
Percepción Auditiva/fisiología , Región CA1 Hipocampal/fisiología , Potenciales de la Membrana/fisiología , Inhibición Neural/fisiología , Células Piramidales/fisiología , Estimulación Acústica , Potenciales de Acción/fisiología , Animales , Masculino , Ratas , Ratas Wistar , Factores de Tiempo
16.
Pharm Biol ; 54(12): 3169-3171, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27564011

RESUMEN

CONTEXT: Thr6-bradykinin is a peptide found in the venom of social and solitary wasps. This kinin, along with other bradykinin-like peptides, is known to cause irreversible paralysis in insects by presynaptic blockade of cholinergic transmission. However, this activity has never been tested in mammals. OBJECTIVE: As such, the objective of this study was to evaluate the effect of Thr6-bradykinin on the cholinergic system of rats. MATERIALS AND METHODS: The peptide was isolated from the venom of the Neotropical social wasp Polybia occidentalis Olivier (Vespidae). After correct identification and quantification by ESI-MS and MS/MS, the peptide was tested in [14C]-choline uptake using rat cortical synaptosomes. Each uptake assay was accompanied by lactic acid dehydrogenase (LDH) activity measurement to evaluate synaptosome integrity in the presence of six increasing concentrations of BK or Thr6-BK (0.039, 0.156, 0.625, 2.500, 10.000 and 40.000 µM). RESULTS: Data revealed that neither BK nor Thr6-BK at any of the six concentrations tested (from 0.039 to 40.000 µM) affected [14C]-choline uptake in synaptosomes. Moreover, there was no increase in LDH in the supernatants, indicating that BK and Thr6-BK did not disrupt the synaptosomes. DISCUSSION AND CONCLUSION: In contrast to previous reports for the insect central nervous system (CNS), Thr6-BK had no effect on mammalian cholinergic transmission. Nevertheless, this selectivity for the insect CNS, combined with its irreversible mode of action may be relevant to the discovery of new sources of insecticides and could contribute to understanding the role of kinins in the mammalian CNS.


Asunto(s)
Bradiquinina/metabolismo , Corteza Cerebral/metabolismo , Colina/metabolismo , Venenos de Avispas/metabolismo , Animales , Bradiquinina/aislamiento & purificación , Bradiquinina/farmacología , Radioisótopos de Carbono/metabolismo , Corteza Cerebral/efectos de los fármacos , Colina/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Masculino , Ratas , Ratas Wistar , Venenos de Avispas/aislamiento & purificación , Venenos de Avispas/farmacología , Avispas
17.
Neurosci Lett ; 543: 12-6, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23562887

RESUMEN

The aims of the present work were to investigate the effects of the repeated administration of Parawixin2 (2-amino-5-ureidopentanamide; formerly FrPbAII), a novel GABA and glycine uptake inhibitor, in rats submitted to PTZ-induced kindling. Wistar rats were randomly divided in groups (n=6-8) for different treatments. Systemic injections of PTZ were administered every 48 h in the dose of 33 mg/kg; i.p., that is sufficient to induce fully kindled seizures in saline i.c.v. treated rats in a short period of time (28 days). Treatments in two types of positive controls (diazepam - DZP and nipecotic acid - NA groups) consisted in daily systemic injections of DZP (2mg/kg; i.p.) or i.c.v. injections of NA (12 µg/µL), while in experimental groups in daily i.c.v. injections of different doses of Parawixin2 (0.15; 0.075; 0.015 µg/µL). Seizures were analyzed using the Lamberty & Klitgaard score and kindling was considered as established after at least three consecutive seizures of score 4 or 5. Cumulative seizure scores for each group were analyzed using repeated measures of ANOVA followed by Tukey test. PTZ induced 4 and 5-score seizures after 12 injections in saline treated rats, whereas daily injection of Parawixin2 inhibited the onset of seizures in a dose dependent manner. Also, the challenging administration of PTZ did not raise seizure score in animals treated with the highest dose of Parawixin2 or those treated with DZP or NA. These findings together with previous data from our laboratory show that Parawixin2 could be a useful probe to design new antiepileptic drugs.


Asunto(s)
Anticonvulsivantes/farmacología , Convulsivantes , Inhibidores de Recaptación de GABA/farmacología , Excitación Neurológica , Pentilenotetrazol , Venenos de Araña/química , Urea/análogos & derivados , Animales , Anticonvulsivantes/uso terapéutico , Diazepam/farmacología , Diazepam/uso terapéutico , Relación Dosis-Respuesta a Droga , Inhibidores de Recaptación de GABA/uso terapéutico , Masculino , Ácidos Nipecóticos/farmacología , Ácidos Nipecóticos/uso terapéutico , Ratas , Ratas Wistar , Convulsiones/tratamiento farmacológico , Convulsiones/fisiopatología , Urea/farmacología , Urea/uso terapéutico
18.
Epilepsy Behav ; 23(3): 205-12, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22381390

RESUMEN

In this study, we isolated the alkaloid erysothrine from the hydroalcoholic extract of flowers from E. mulungu and screened for its anticonvulsant and anxiolytic actions based on neuroethological and neurochemical experiments. Our results showed that the administration of erysothrine inhibited seizures evoked by bicuculline, PTZ, NMDA and most remarkably, kainic acid. Also, erysothrine induced an increase in the number of entries but not in the time spent in the open arms of the EPM. However, we did not notice any alterations in the light-dark choice or in the open-field tests. In preliminary neurochemistry tests, we also showed that erysothrine (0.001-10 µg/mL) did not alter the GABA or glutamate synaptossomal uptake and binding. Altogether, our results describe an alkaloid with anticonvulsant activity and mild anxiolytic activity that might be considered well tolerated as it does not alter the general behavior of the animals in the used doses.


Asunto(s)
Alcaloides/uso terapéutico , Ansiolíticos/uso terapéutico , Anticonvulsivantes/uso terapéutico , Ansiedad/tratamiento farmacológico , Erythrina/química , Flores/química , Fitoterapia , Convulsiones/tratamiento farmacológico , Alcaloides/aislamiento & purificación , Animales , Ansiolíticos/aislamiento & purificación , Anticonvulsivantes/aislamiento & purificación , Ansiedad/etiología , Convulsivantes/toxicidad , Diazepam/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Conducta Exploratoria/efectos de los fármacos , Ácido Glutámico/metabolismo , Locomoción/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Sinaptosomas/efectos de los fármacos , Tritio/metabolismo , Ácido gamma-Aminobutírico/metabolismo
19.
Epilepsy Behav ; 22(2): 158-64, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21763206

RESUMEN

The neurobiological activity of Parawixin 10, isolated from Parawixia bistriata spider venom, was investigated. Cannulas were implanted in the lateral ventricles of Wistar rats (200-250 g, n=6-8 per group) to perform anticonvulsant and behavioral assays, and synaptosomes from cerebral cortices of male Wistar rats were used for neurochemical studies. The results indicate that pretreatment with Parawixin 10 prevents the onset of seizures induced with kainic acid, N-methyl-D-aspartate, and pentylenetetrazole in a dose-response manner. Lower doses of Parawixin 10 significantly increased the latency to onset of kainic acid-, pentylenetetrazole-, and N-methyl-D-aspartate-induced seizures. There were maximum increases of 79% in L-[(3)H]glutamine uptake and 40% in [(3)H]glycine uptake; [(3)H]GABA uptake did not change. The findings demonstrate that this novel compound from P. bistriata venom exerts a pharmacological effect on the glutamatergic and glycinergic systems.


Asunto(s)
Anticonvulsivantes/química , Anticonvulsivantes/uso terapéutico , Convulsiones/tratamiento farmacológico , Venenos de Araña/química , Venenos de Araña/uso terapéutico , Análisis de Varianza , Animales , Ataxia/tratamiento farmacológico , Ataxia/etiología , Corteza Cerebral/ultraestructura , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/toxicidad , Ácido Glutámico/metabolismo , Glicina/efectos de los fármacos , Ácido Kaínico/toxicidad , Masculino , Actividad Motora/efectos de los fármacos , N-Metilaspartato/toxicidad , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Convulsiones/inducido químicamente , Convulsiones/complicaciones , Convulsiones/patología , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Tritio/metabolismo , Ácido gamma-Aminobutírico/metabolismo
20.
Epilepsy Behav ; 20(3): 441-6, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21277832

RESUMEN

Neural mechanisms underlying the onset and maintenance of epileptic seizures involve alterations in inhibitory and/or excitatory neurotransmitter pathways. Thus, the prospecting of novel molecules from natural products that target both inhibition and excitation systems has deserved interest in the rational design of new anticonvulsants. We isolated the alkaloids (+)-erythravine and (+)-11-α-hydroxy-erythravine from the flowers of Erythrina mulungu and evaluated the action of these compounds against chemically induced seizures in rats. Our results showed that the administration of different doses of (+)-erythravine inhibited seizures evoked by bicuculline, pentylenetetrazole, and kainic acid at maximum of 80, 100, and 100%, respectively, whereas different doses of (+)-11-α-hydroxy-erythravine inhibited seizures at a maximum of 100% when induced by bicuculline, NMDA, and kainic acid, and, to a lesser extent, PTZ (60%). The analysis of mean latency to seizure onset of nonprotected animals, for specific doses of alkaloids, showed that (+)-erythravine increased latencies to seizures induced by bicuculline. Although (+)-erythravine exhibited very weak anticonvulsant action against seizures induced by NMDA, this alkaloid increased the latency in this assay. The increase in latency to onset of seizures promoted by (+)-11-α-hydroxy-erythravine reached a maximum of threefold in the bicuculline test. All animals were protected against death when treated with different doses of (+)-11-α-hydroxy-erythravine in the tests using the four chemical convulsants. Identical results were obtained when using (+)-erythravine in the tests of bicuculline, NMDA, and PTZ, and, to a lesser extent, kainic acid. Therefore, these data validate the anticonvulsant properties of the tested alkaloids, which is of relevance in consideration of the ethnopharmacological/biotechnological potential of E. mulungu.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Fabaceae , Flores/química , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Fitoterapia/métodos , Extractos Vegetales/uso terapéutico , Convulsiones/tratamiento farmacológico , Animales , Bicuculina/toxicidad , Distribución de Chi-Cuadrado , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fabaceae/química , Compuestos Heterocíclicos de 4 o más Anillos/química , Inyecciones Intraventriculares , Ácido Kaínico/toxicidad , Masculino , N-Metilaspartato/toxicidad , Pentilenotetrazol/toxicidad , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Convulsiones/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA