Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Meet Acoust ; 35(1)2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32612739

RESUMEN

Non-invasive kidney stone treatments such as shock wave lithotripsy (SWL) and burst wave lithotripsy (BWL) rely on the delivery of pressure waves through tissue to the stone. In both SWL and BWL, the potential to hinder comminution by exciting cavitation proximal to the stone has been reported. To elucidate how different stones alter prefocal cavitation in BWL, different natural and synthetic stones were treated in vitro using a therapy transducer operating at 350 kHz (peak negative pressure 7 MPa, pulse length 20 cycles, pulse repetition frequency 10 Hz). Stones were held in a confined volume of water designed to mimic the geometry of a kidney calyx, with the water filtered and degassed to maintain conditions for which the cavitation threshold (in the absence of a stone) matches that from in vivo observations. Stone targeting and cavitation monitoring were performed via ultrasound imaging using a diagnostic probe aligned coaxially with the therapy transducer. Quantitative differences in the extent and location of cavitation activity were observed for different stone types-e.g., "softer" stones (natural and synthetic) that disintegrate into "dusty" fragments produced larger prefocal cavitation clouds. Future work will focus on correlation of such cavitation metrics with stone fragmentation.

2.
Proc Meet Acoust ; 35(1)2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32612741

RESUMEN

Our goal is an office-based, handheld ultrasound system to target, detach, break, and/or expel stones and stone fragments from the urinary collecting system to facilitate natural clearance. Repositioning of stones in humans (maximum 2.5 MPa, and 3-second bursts) and breaking of stones in a porcine model (maximum 50 cycles, 20 Hz repetition, 30 minutes, and 7 MPa peak negative pressure) have been demonstrated using the same 350-kHz probe. Repositioning in humans was conducted during surgery with a ureteroscope in the kidney to film stone movement. Independent video review confirmed stone movements (≥ 3 mm) in 15 of 16 kidneys (94%). No serious or unanticipated adverse events were reported. Experiments of burst wave lithotripsy (BWL) effectiveness on breaking human stones implanted in the porcine bladder and kidney demonstrated fragmentation of 8 of 8 stones on post mortem dissection. A 1-week survival study with the BWL exposures and 10 specific-pathogen-free pigs, showed all findings were within normal limits on clinical pathology, hematology, and urinalysis. These results demonstrate that repositioning of stones with ultrasonic propulsion and breaking of stones with BWL are safe and effective.

3.
Proc Meet Acoust ; 35(1)2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32612743

RESUMEN

Burst wave lithotripsy (BWL) is a new non-invasive method for stone comminution using bursts of sub-megahertz ultrasound. A porcine model of urolithiasis and techniques to implement BWL treatment has been developed to evaluate its effectiveness and acute safety. Six human calcium oxalate monohydrate stones (6-7 mm) were hydrated, weighed, and surgically implanted into the kidneys of three pigs. Transcutaneous stone treatments were performed with a BWL transducer coupled to the skin via an external water bath. Stone targeting and treatment monitoring were performed with a co-aligned ultrasound imaging probe. Treatment exposures were applied in three 10-minute intervals for each stone. If sustained cavitation in the parenchyma was observed by ultrasound imaging feedback, treatment was paused and the pressure amplitude was decreased for the remaining time. Peak negative focal pressures between 6.5 and 7 MPa were applied for all treatments. After treatment, stone fragments were removed from the kidneys. At least 50% of each stone was reduced to <2 mm fragments. 100% of four stones were reduced to <4 mm fragments. Magnetic resonance imaging showed minimal injury to the functional renal volume. This study demonstrated that BWL could be used to effectively fragment kidney stones with minimal injury.

4.
AIP Conf Proc ; 16852015.
Artículo en Inglés | MEDLINE | ID: mdl-27087711

RESUMEN

Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher transducer output to provide stronger pushing force; however, nonlinear acoustic saturation effect can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match low power pressure beam scans. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...