Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genesis ; 62(4): e23612, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39054872

RESUMEN

The SRY HMG box transcription factor Sox21 plays multiple critical roles in neurogenesis, with its function dependent on concentration and developmental stage. In the allotetraploid Xenopus laevis, there are two homeologs of sox21, namely sox21.S and sox21.L. Previous studies focused on Sox21.S, but its amino acid sequence is divergent, lacking conserved poly-A stretches and bearing more similarity with ancestral homologs. In contrast, Sox21.L shares higher sequence similarity with mouse and chick Sox21. To determine if Sox21.S and Sox21.L have distinct functions, we conducted gain and loss-of-function studies in Xenopus embryos. Our studies revealed that Sox21.S and Sox21.L are functionally redundant, but Sox21.L is more effective at driving changes than Sox21.S. These results also support our earlier findings in ectodermal explants, demonstrating that Sox21 function is dose-dependent. While Sox21 is necessary for primary neuron formation, high levels prevent their formation. Strikingly, these proteins autoregulate, with high levels of Sox21.L reducing sox21.S and sox21.L mRNA levels, and decreased Sox21.S promoting increased expression of sox21.L. Our findings shed light on the intricate concentration-dependent roles of Sox21 homeologs in Xenopus neurogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neurogénesis , Proteínas de Xenopus , Xenopus laevis , Animales , Neurogénesis/genética , Xenopus laevis/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Neuronas/metabolismo , Factores de Transcripción SOXB2/genética , Factores de Transcripción SOXB2/metabolismo
2.
Genes (Basel) ; 15(2)2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38397232

RESUMEN

Sox11, a member of the SoxC family of transcription factors, has distinct functions at different times in neural development. Studies in mouse, frog, chick, and zebrafish show that Sox11 promotes neural fate, neural differentiation, and neuron maturation in the central nervous system. These diverse roles are controlled in part by spatial and temporal-specific protein interactions. However, the partner proteins and Sox11-interaction domains underlying these diverse functions are not well defined. Here, we identify partner proteins and the domains of Xenopus laevis Sox11 required for protein interaction and function during neurogenesis. Our data show that Sox11 co-localizes and interacts with Pou3f2 and Neurog2 in the anterior neural plate and in early neurons, respectively. We also demonstrate that Sox11 does not interact with Neurog1, a high-affinity partner of Sox11 in the mouse cortex, suggesting that Sox11 has species-specific partner proteins. Additionally, we determined that the N-terminus including the HMG domain of Sox11 is necessary for interaction with Pou3f2 and Neurog2, and we established a novel role for the N-terminal 46 amino acids in the specification of placodal progenitors. This is the first identification of partner proteins for Sox11 and of domains required for partner-protein interactions and distinct roles in neurogenesis.


Asunto(s)
Neurogénesis , Factores de Transcripción SOXC , Proteínas de Xenopus , Xenopus laevis , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistema Nervioso Central , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Dominios Proteicos
3.
Curr Top Dev Biol ; 147: 545-562, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35337462

RESUMEN

Hemichordates have long been recognized as a critical group for addressing hypotheses of chordate origins. Historically this was due to anatomical traits that resembled those of chordates, most strikingly the dorsolateral gill slits. As molecular data and phylogenetic analyses were found to support a close phylogenetic relationship between hemichordates and chordates within the deuterostomes, interest was revived in hemichordates. In particular, Saccoglossus kowalevskii has been developed as a molecular model to represent hemichordate developmental biology. Herein, we highlight the considerations when choosing a particular species to study and the challenges we encountered when developing S. kowalevskii. We discuss our findings and how method and tool development enabled them, and how we envision expanding our repertoire of molecular tools in the future. Establishing a new model organism comes with many obstacles-from identifying a reliable season to collect animals, to developing modern molecular techniques. The Saccoglossus research community has benefited greatly from the collaborations and teamwork established over the years. As a result, Saccoglossus is well positioned to contribute to a new century of evolutionary developmental (evo-devo) research.


Asunto(s)
Cordados , Animales , Evolución Biológica , Filogenia
4.
Dev Biol ; 397(2): 237-47, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25448693

RESUMEN

Members of the SoxB transcription factor family play critical roles in the regulation of neurogenesis. The SoxB1 proteins are required for the induction and maintenance of a proliferating neural progenitor population in numerous vertebrates, however the role of the SoxB2 protein, Sox21, is less clear due to conflicting results. To clarify the role of Sox21 in neurogenesis, we examined its function in the Xenopus neural plate. Here we report that misexpression of Sox21 expands the neural progenitor domain, and represses neuron formation by binding to Neurogenin (Ngn2) and blocking its function. Conversely, we found that Sox21 is also required for neuron formation, as cells lacking Sox21 undergo cell death and thus are unable to differentiate. Together our data indicate that Sox21 plays more than one role in neurogenesis, where a threshold level is required for cell viability and normal differentiation of neurons, but a higher concentration of Sox21 inhibits neuron formation and instead promotes progenitor maintenance.


Asunto(s)
Diferenciación Celular/fisiología , Regulación de la Expresión Génica/fisiología , Neuronas/fisiología , Factores de Transcripción SOX/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Western Blotting , Cartilla de ADN/genética , Regulación de la Expresión Génica/efectos de los fármacos , Inmunoprecipitación , Hibridación in Situ , Plásmidos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOX/farmacología , Proteínas de Xenopus/farmacología
5.
Dev Biol ; 386(1): 252-63, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24333176

RESUMEN

Defining the organization and temporal onset of key steps in neurogenesis in invertebrate deuterostomes is critical to understand the evolution of the bilaterian and deuterostome nervous systems. Although recent studies have revealed the organization of the nervous system in adult hemichordates, little attention has been paid to neurogenesis during embryonic development in this third major phylum of deuterostomes. We examine the early events of neural development in the enteropneust hemichordate Saccoglossus kowalevskii by analyzing the expression of 11 orthologs of key genes associated with neurogenesis in an expansive range of bilaterians. Using in situ hybridization (ISH) and RT-PCR, we follow the course of neural development to track the transition of the early embryonic diffuse nervous system to the more regionalized midline nervous system of the adult. We show that in Saccoglossus, neural progenitor markers are expressed maternally and broadly encircle the developing embryo. An increase in their expression and the onset of pan neural markers, indicate that neural specification occurs in late blastulae - early gastrulae. By mid-gastrulation, punctate expression of markers of differentiating neurons encircling the embryo indicate the presence of immature neurons, and at the end of gastrulation when the embryo begins to elongate, markers of mature neurons are expressed. At this stage, expression of a subset of neuronal markers is concentrated along the trunk ventral and dorsal midlines. These data indicate that the diffuse embryonic nervous system of Saccoglossus is transient and quickly reorganizes before hatching to resemble the adult regionalized, centralized nervous system. This regionalization occurs at a much earlier developmental stage than anticipated indicating that centralization is not linked in S. kowalevskii to a lifestyle change of a swimming larva metamorphosing to a crawling worm-like adult.


Asunto(s)
Cordados no Vertebrados/embriología , Sistema Nervioso/embriología , Animales , Evolución Biológica , ADN Complementario/metabolismo , Gástrula/metabolismo , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Biblioteca de Genes , Marcadores Genéticos/genética , Hibridación in Situ , Larva/genética , Neurogénesis , Neuronas/metabolismo , Factores de Tiempo
6.
Proc Natl Acad Sci U S A ; 108(25): 10284-9, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21628561

RESUMEN

Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are the main lipid components of bacterial outer membranes and are essential for cell viability in most Gram-negative bacteria. Here we show that small molecule inhibitors of LpxC [UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase], the enzyme that catalyzes the first committed step in the biosynthesis of lipid A, block the synthesis of LOS in the obligate intracellular bacterial pathogen Chlamydia trachomatis. In the absence of LOS, Chlamydia remains viable and establishes a pathogenic vacuole ("inclusion") that supports robust bacterial replication. However, bacteria grown under these conditions were no longer infectious. In the presence of LpxC inhibitors, replicative reticulate bodies accumulated in enlarged inclusions but failed to express selected late-stage proteins and transition to elementary bodies, a Chlamydia developmental form that is required for invasion of mammalian cells. These findings suggest the presence of an outer membrane quality control system that regulates Chlamydia developmental transition to infectious elementary bodies and highlights the potential application of LpxC inhibitors as unique class of antichlamydial agents.


Asunto(s)
Chlamydia trachomatis/patogenicidad , Cuerpos de Inclusión/metabolismo , Lipopolisacáridos/biosíntesis , Amidohidrolasas/antagonistas & inhibidores , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Infecciones por Chlamydia , Chlamydia trachomatis/citología , Chlamydia trachomatis/fisiología , Células HeLa , Humanos , Lípido A/biosíntesis , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Estructura Molecular
7.
Mech Dev ; 126(1-2): 42-55, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18992330

RESUMEN

The SRY-related, HMG box SoxB1 transcription factors are highly homologous, evolutionarily conserved proteins that are expressed in neuroepithelial cells throughout neural development. SoxB1 genes are down-regulated as cells exit the cell-cycle to differentiate and are considered functionally redundant in maintaining neural precursor populations. However, little is known about Sox3 function and its mode of action during primary neurogenesis. Using gain and loss-of-function studies, we analyzed Sox3 function in detail in Xenopus early neural development and compared it to that of Sox2. Through these studies we identified the first targets of a SoxB1 protein during primary neurogenesis. Sox3 functions as an activator to induce expression of the early neural genes, sox2 and geminin in the absence of protein synthesis and to indirectly inhibit the Bmp target Xvent2. As a result, Sox3 increases cell proliferation, delays neurogenesis and inhibits epidermal and neural crest formation to expand the neural plate. Our studies indicate that Sox3 and 2 have many similar functions in this process including the ability to activate expression of geminin in naïve ectodermal explants. However, there are some differences; Sox3 activates the expression of sox2, while Sox2 does not activate expression of sox3 and sox3 is uniquely expressed throughout the ectoderm prior to neural induction suggesting a role in neural competence. With morpholino-mediated knockdown of Sox3, we demonstrate that it is required for induction of neural tissue by BMP inhibition. Together these data indicate that Sox3 has multiple roles in early neural development including as a factor required for nogginmediated neural induction.


Asunto(s)
Ectodermo/metabolismo , Neuronas/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Animales , Biomarcadores/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular , Proliferación Celular , Ectodermo/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neuronas/citología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Células Madre/citología , Factores de Transcripción/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
8.
Int J Dev Biol ; 52(7): 999-1004, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18956331

RESUMEN

The Sox family of transcription factors is thought to regulate gene expression in a wide variety of developmental processes. Here we describe the cloning of the X. laevis orthologs of the SoxB2 family of transcription factors, sox14 and sox21. In situ hybridization revealed that sox14 expression is restricted to the hypothalamus, dorsal thalamus, the optic tectum, a region of the somatic motornucleus in the midbrain and hindbrain, the vestibular nuclei in the hindbrain and a discrete ventral domain in the developing spinal cord. In contrast to the limited expression domain of sox14, sox21 is found throughout the developing central nervous system, including the olfactory placodes, with strongest expression at the boundary between the midbrain and hindbrain.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Factores de Transcripción SOX/genética , Factores de Transcripción SOXB2/genética , Factores de Transcripción/genética , Proteínas de Xenopus/genética , Xenopus/embriología , Xenopus/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Embrión no Mamífero , Proteínas del Grupo de Alta Movilidad/metabolismo , Inmunohistoquímica , Hibridación in Situ , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Factores de Transcripción SOX/metabolismo , Factores de Transcripción SOXB2/metabolismo , Homología de Secuencia de Aminoácido , Médula Espinal/embriología , Médula Espinal/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo
9.
Dev Biol ; 313(1): 307-19, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18031719

RESUMEN

The formation of the nervous system is initiated when ectodermal cells adopt the neural fate. Studies in Xenopus demonstrate that inhibition of BMP results in the formation of neural tissue. However, the molecular mechanism driving the expression of early neural genes in response to this inhibition is unknown. Moreover, controversy remains regarding the sufficiency of BMP inhibition for neural induction. To address these questions, we performed a detailed analysis of the regulation of the soxB1 gene, sox3, one of the earliest genes expressed in the neuroectoderm. Using ectodermal explant assays, we analyzed the role of BMP, Wnt and FGF signaling in the regulation of sox3 and the closely related soxB1 gene, sox2. Our results demonstrate that both sox3 and sox2 are induced in response to BMP antagonism, but by distinct mechanisms and that the activation of both genes is independent of FGF signaling. However, both require FGF for the maintenance of their expression. Finally, sox3 genomic elements were identified and characterized and an element required for BMP-mediated repression via Vent proteins was identified through the use of transgenesis and computational analysis. Interestingly, none of the elements required for sox3 expression were identified in the sox2 locus. Together our data indicate that two closely related genes have unique mechanisms of gene regulation at the onset of neural development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de Homeodominio/metabolismo , Placa Neural/embriología , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Secuencia de Bases , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/metabolismo , Embrión no Mamífero/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas HMGB/metabolismo , Datos de Secuencia Molecular , Placa Neural/metabolismo , Biosíntesis de Proteínas , Factores de Transcripción SOXB1 , Xenopus laevis/embriología , Xenopus laevis/metabolismo
10.
Mol Cell Biol ; 25(11): 4442-54, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15899850

RESUMEN

Telomerase extends chromosome ends by the synthesis of tandem simple-sequence repeats. Studies of minimal recombinant telomerase ribonucleoprotein (RNP) reconstituted in vitro have revealed sequences within the telomerase RNA subunit (TER) that are required to establish its internal template and other unique features of enzyme activity. Here we test the significance of these motifs following TER assembly into telomerase holoenzyme in vivo. We established a method for stable expression of epitope-tagged TER and TER variants in place of wild-type Tetrahymena TER. We found that sequence substitutions in nontemplate regions of TER altered telomere length maintenance in vivo, with an increase or decrease in the set point for telomere length homeostasis. We also characterized the in vitro activity of the telomerase holoenzymes reconstituted with TER variants, following RNA-based RNP affinity purification from cell extracts. We found that nontemplate sequence substitutions imposed specific defects in the fidelity and processivity of template use. These findings demonstrate nontemplate functions of TER that are critical for the telomerase holoenzyme catalytic cycle and for proper telomere length maintenance in vivo.


Asunto(s)
ARN/metabolismo , Telomerasa/metabolismo , Tetrahymena thermophila/enzimología , Animales , Catálisis , Holoenzimas/genética , Holoenzimas/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/química , Telomerasa/genética , Moldes Genéticos , Tetrahymena thermophila/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA