Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Article En | MEDLINE | ID: mdl-38753191

The default mode network (DMN) is atypically active in patients with ADHD, likely contributing to the inattention patterns observed in patients with the disorder. Nonetheless, magnetic resonance spectroscopy (MRS) studies have rarely targeted the posterior cingulate cortex, a key DMN region, and little is known about the biochemical setting within this network in patients with ADHD. We aimed to assess the differences in metabolite profiles of the posterior cingulate cortex-a key region of the DMN-between patients with ADHD and controls. Five brain metabolites-glutamate, inositol, N-acetyl aspartate, choline, and creatine-were measured through MRS in the posterior cingulate cortex of patients and controls in a 3.0 T scanner. Between-group comparison of neurometabolite concentrations in PCC was performed using multivariate analysis of covariance. A total of 88 patients and 44 controls were included in the analysis. Patients with ADHD showed lower levels of glutamate in the posterior cingulate cortex compared to controls (p = 0.003). Lower concentrations of glutamate in the posterior cingulate cortex suggest that a glutamatergic imbalance within the posterior cingulate cortex might play a role in the pathogenesis of ADHD. Further understanding of the causes and consequences of such glutamate decrease might help explain how some glutamate-related drug effects impact on ADHD symptomatology.

2.
Neuroimage ; 293: 120622, 2024 Jun.
Article En | MEDLINE | ID: mdl-38648869

Correlating transcriptional profiles with imaging-derived phenotypes has the potential to reveal possible molecular architectures associated with cognitive functions, brain development and disorders. Competitive null models built by resampling genes and self-contained null models built by spinning brain regions, along with varying test statistics, have been used to determine the significance of transcriptional associations. However, there has been no systematic evaluation of their performance in imaging transcriptomics analyses. Here, we evaluated the performance of eight different test statistics (mean, mean absolute value, mean squared value, max mean, median, Kolmogorov-Smirnov (KS), Weighted KS and the number of significant correlations) in both competitive null models and self-contained null models. Simulated brain maps (n = 1,000) and gene sets (n = 500) were used to calculate the probability of significance (Psig) for each statistical test. Our results suggested that competitive null models may result in false positive results driven by co-expression within gene sets. Furthermore, we demonstrated that the self-contained null models may fail to account for distribution characteristics (e.g., bimodality) of correlations between all available genes and brain phenotypes, leading to false positives. These two confounding factors interacted differently with test statistics, resulting in varying outcomes. Specifically, the sign-sensitive test statistics (i.e., mean, median, KS, Weighted KS) were influenced by co-expression bias in the competitive null models, while median and sign-insensitive test statistics were sensitive to the bimodality bias in the self-contained null models. Additionally, KS-based statistics produced conservative results in the self-contained null models, which increased the risk of false negatives. Comprehensive supplementary analyses with various configurations, including realistic scenarios, supported the results. These findings suggest utilizing sign-insensitive test statistics such as mean absolute value, max mean in the competitive null models and the mean as the test statistic for the self-contained null models. Additionally, adopting the confounder-matched (e.g., coexpression-matched) null models as an alternative to standard null models can be a viable strategy. Overall, the present study offers insights into the selection of statistical tests for imaging transcriptomics studies, highlighting areas for further investigation and refinement in the evaluation of novel and commonly used tests.


Brain , Phenotype , Brain/diagnostic imaging , Brain/anatomy & histology , Humans , Transcriptome , Models, Statistical , Gene Expression Profiling/methods
3.
EBioMedicine ; 103: 105086, 2024 May.
Article En | MEDLINE | ID: mdl-38580523

BACKGROUND: Alcohol consumption is associated with numerous negative social and health outcomes. These associations may be direct consequences of drinking, or they may reflect common genetic factors that influence both alcohol consumption and other outcomes. METHODS: We performed exploratory phenome-wide association studies (PheWAS) of three of the best studied protective single nucleotide polymorphisms (SNPs) in genes encoding ethanol metabolising enzymes (ADH1B: rs1229984-T, rs2066702-A; ADH1C: rs698-T) using up to 1109 health outcomes across 28 phenotypic categories (e.g., substance-use, mental health, sleep, immune, cardiovascular, metabolic) from a diverse 23andMe cohort, including European (N ≤ 2,619,939), Latin American (N ≤ 446,646) and African American (N ≤ 146,776) populations to uncover new and perhaps unexpected associations. These SNPs have been consistently implicated by both candidate gene studies and genome-wide association studies of alcohol-related behaviours but have not been investigated in detail for other relevant phenotypes in a hypothesis-free approach in such a large cohort of multiple ancestries. To provide insight into potential causal effects of alcohol consumption on the outcomes significant in the PheWAS, we performed univariable two-sample and one-sample Mendelian randomisation (MR) analyses. FINDINGS: The minor allele rs1229984-T, which is protective against alcohol behaviours, showed the highest number of PheWAS associations across the three cohorts (N = 232, European; N = 29, Latin American; N = 7, African American). rs1229984-T influenced multiple domains of health. We replicated associations with alcohol-related behaviours, mental and sleep conditions, and cardio-metabolic health. We also found associations with understudied traits related to neurological (migraines, epilepsy), immune (allergies), musculoskeletal (fibromyalgia), and reproductive health (preeclampsia). MR analyses identified evidence of causal effects of alcohol consumption on liability for 35 of these outcomes in the European cohort. INTERPRETATION: Our work demonstrates that polymorphisms in genes encoding alcohol metabolising enzymes affect multiple domains of health beyond alcohol-related behaviours. Understanding the underlying mechanisms of these effects could have implications for treatments and preventative medicine. FUNDING: MVJ, NCK, SBB, SSR and AAP were supported by T32IR5226 and 28IR-0070. SSR was also supported by NIDA DP1DA054394. NCK and RBC were also supported by R25MH081482. ASH was supported by funds from NIAAA K01AA030083. JLMO was supported by VA 1IK2CX002095. JLMO and JJMM were also supported by NIDA R21DA050160. JJMM was also supported by the Kavli Postdoctoral Award for Academic Diversity. EGA was supported by K01MH121659 from the NIMH/NIH, the Caroline Wiess Law Fund for Research in Molecular Medicine and the ARCO Foundation Young Teacher-Investigator Fund at Baylor College of Medicine. MSA was supported by the Instituto de Salud Carlos III and co-funded by the European Union Found: Fondo Social Europeo Plus (FSE+) (P19/01224, PI22/00464 and CP22/00128).


Alcohol Drinking , Genome-Wide Association Study , Mendelian Randomization Analysis , Phenotype , Polymorphism, Single Nucleotide , Humans , Alcohol Drinking/genetics , Female , Cohort Studies , Male , Phenomics , Genetic Predisposition to Disease , Alcohol Dehydrogenase/genetics , Genotype , Alleles
4.
Addiction ; 119(1): 113-124, 2024 Jan.
Article En | MEDLINE | ID: mdl-37724052

BACKGROUND AND AIMS: Recently, we demonstrated that a distinct pattern of structural covariance networks (SCN) from magnetic resonance imaging (MRI)-derived measurements of brain cortical thickness characterized young adults with alcohol use disorder (AUD) and predicted current and future problematic drinking in adolescents relative to controls. Here, we establish the robustness and value of SCN for identifying heavy alcohol users in three additional independent studies. DESIGN AND SETTING: Cross-sectional and longitudinal studies using data from the Pediatric Imaging, Neurocognition and Genetics (PING) study (n = 400, age range = 14-22 years), the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) (n = 272, age range = 17-22 years) and the Human Connectome Project (HCP) (n = 375, age range = 22-37 years). CASES: Cases were defined based on heavy alcohol use patterns or former alcohol use disorder (AUD) diagnoses: 50, 68 and 61 cases were identified. Controls had none or low alcohol use or absence of AUD: 350, 204 and 314 controls were selected. MEASUREMENTS: Graph theory metrics of segregation and integration were used to summarize SCN. FINDINGS: Mirroring our prior findings, and across the three data sets, cases had a lower clustering coefficient [area under the curve (AUC) = -0.029, P = 0.002], lower modularity (AUC = -0.14, P = 0.004), lower average shortest path length (AUC = -0.078, P = 0.017) and higher global efficiency (AUC = 0.007, P = 0.010). Local efficiency differences were marginal (AUC = -0.017, P = 0.052). That is, cases exhibited lower network segregation and higher integration, suggesting that adjacent nodes (i.e. brain regions) were less similar in thickness whereas spatially distant nodes were more similar. CONCLUSION: Structural covariance network (SCN) differences in the brain appear to constitute an early marker of heavy alcohol use in three new data sets and, more generally, demonstrate the utility of SCN-derived metrics to detect brain-related psychopathology.


Alcoholism , Connectome , Young Adult , Adolescent , Child , Humans , Adult , Alcoholism/pathology , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Brain/pathology , Connectome/methods
5.
Mol Psychiatry ; 2023 Jun 28.
Article En | MEDLINE | ID: mdl-37369720

Leveraging ~10 years of prospective longitudinal data on 704 participants, we examined the effects of adolescent versus young adult cannabis initiation on MRI-assessed cortical thickness development and behavior. Data were obtained from the IMAGEN study conducted across eight European sites. We identified IMAGEN participants who reported being cannabis-naïve at baseline and had data available at baseline, 5-year, and 9-year follow-up visits. Cannabis use was assessed with the European School Survey Project on Alcohol and Drugs. T1-weighted MR images were processed through the CIVET pipeline. Cannabis initiation occurring during adolescence (14-19 years) and young adulthood (19-22 years) was associated with differing patterns of longitudinal cortical thickness change. Associations between adolescent cannabis initiation and cortical thickness change were observed primarily in dorso- and ventrolateral portions of the prefrontal cortex. In contrast, cannabis initiation occurring between 19 and 22 years of age was associated with thickness change in temporal and cortical midline areas. Follow-up analysis revealed that longitudinal brain change related to adolescent initiation persisted into young adulthood and partially mediated the association between adolescent cannabis use and past-month cocaine, ecstasy, and cannabis use at age 22. Extent of cannabis initiation during young adulthood (from 19 to 22 years) had an indirect effect on psychotic symptoms at age 22 through thickness change in temporal areas. Results suggest that developmental timing of cannabis exposure may have a marked effect on neuroanatomical correlates of cannabis use as well as associated behavioral sequelae. Critically, this work provides a foundation for neurodevelopmentally informed models of cannabis exposure in humans.

6.
J Neural Transm (Vienna) ; 130(5): 697-706, 2023 05.
Article En | MEDLINE | ID: mdl-37002331

Several GWAS reported Myocyte Enhancer Factor 2 C (MEF2C) gene associations with white matter microstructure and psychiatric disorders, and MEF2C involvement in pathways related to neuronal development suggests a common biological factor underlying these phenotypes. We aim to refine the MEF2C effects in the brain relying on an integrated analysis of white matter and psychiatric phenotypes in an extensively characterized sample. This study included 870 Brazilian adults (47% from an attention-deficit/hyperactivity disorder outpatient clinic) assessed through standardized psychiatric interviews, 139 of which underwent a magnetic resonance imaging scan. We evaluated variants in the MEF2C region using two approaches: 1) a gene-wide analysis, which uses the sum of polymorphism effects, and 2) SNP analyses, restricted to the independent variants within the gene. The outcomes included psychiatric phenotypes and fractional anisotropy for brain images. Results: The gene-wide analyses pointed to a nominal association between MEF2C and the Temporal Portion of the Superior Longitudinal Fasciculus (SLFTEMP). The SNP analysis identified four independent variants significantly associated with SLFTEMP and one (rs4218438) with Substance Use Disorder. Our findings showing specific associations of MEF2C variants with temporal-frontal circuitry components may help to elucidate how the MEF2C gene underlies a broad range of psychiatric phenotypes since these regions are relevant to executive and cognitive functions.


Attention Deficit Disorder with Hyperactivity , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , MEF2 Transcription Factors/genetics , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging , Attention Deficit Disorder with Hyperactivity/genetics , Anisotropy
7.
Eur Arch Psychiatry Clin Neurosci ; 273(1): 15-24, 2023 Feb.
Article En | MEDLINE | ID: mdl-35279744

The Forkhead box P2 (FOXP2) encodes for a transcription factor with a broad role in embryonic development. It is especially represented among GWAS hits for neurodevelopmental disorders and related traits, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, neuroticism, and risk-taking behaviors. While several functional studies are underway to understand the consequences of FOXP2 variation, this study aims to expand previous findings to clinically and genetically related phenotypes and neuroanatomical features among subjects with ADHD. The sample included 407 adults with ADHD and 463 controls. Genotyping was performed on the Infinium PsychArray-24 BeadChip, and the FOXP2 gene region was extracted. A gene-wide approach was adopted to evaluate the combined effects of FOXP2 variants (n = 311) on ADHD status, severity, comorbidities, and personality traits. Independent risk variants presenting potential functional effects were further tested for association with cortical surface areas in a subsample of cases (n = 87). The gene-wide analyses within the ADHD sample showed a significant association of the FOXP2 gene with harm avoidance (P = 0.001; PFDR = 0.015) and nominal associations with hyperactivity symptoms (P = 0.026; PFDR = 0.130) and antisocial personality disorder (P = 0.026; PFDR = 0.130). An insertion/deletion variant (rs79622555) located downstream of FOXP2 was associated with the three outcomes and nominally with the surface area of superior parietal and anterior cingulate cortices. Our results extend and refine previous GWAS findings pointing to a role of FOXP2 in several neurodevelopment-related phenotypes, mainly those involving underlying symptomatic domains of self-regulation and inhibitory control. Taken together, the available evidence may constitute promising insights into the puzzle of the FOXP2-related pathophysiology.


Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Humans , Attention Deficit Disorder with Hyperactivity/diagnosis , Autism Spectrum Disorder/complications , Genome-Wide Association Study , Phenotype , Brain , Forkhead Transcription Factors/genetics
8.
Mol Psychiatry ; 28(2): 698-709, 2023 02.
Article En | MEDLINE | ID: mdl-36380235

The neurobiological bases of the association between development and psychopathology remain poorly understood. Here, we identify a shared spatial pattern of cortical thickness (CT) in normative development and several psychiatric and neurological disorders. Principal component analysis (PCA) was applied to CT of 68 regions in the Desikan-Killiany atlas derived from three large-scale datasets comprising a total of 41,075 neurotypical participants. PCA produced a spatially broad first principal component (PC1) that was reproducible across datasets. Then PC1 derived from healthy adult participants was compared to the pattern of CT differences associated with psychiatric and neurological disorders comprising a total of 14,886 cases and 20,962 controls from seven ENIGMA disease-related working groups, normative maturation and aging comprising a total of 17,697 scans from the ABCD Study® and the IMAGEN developmental study, and 17,075 participants from the ENIGMA Lifespan working group, as well as gene expression maps from the Allen Human Brain Atlas. Results revealed substantial spatial correspondences between PC1 and widespread lower CT observed in numerous psychiatric disorders. Moreover, the PC1 pattern was also correlated with the spatial pattern of normative maturation and aging. The transcriptional analysis identified a set of genes including KCNA2, KCNS1 and KCNS2 with expression patterns closely related to the spatial pattern of PC1. The gene category enrichment analysis indicated that the transcriptional correlations of PC1 were enriched to multiple gene ontology categories and were specifically over-represented starting at late childhood, coinciding with the onset of significant cortical maturation and emergence of psychopathology during the prepubertal-to-pubertal transition. Collectively, the present study reports a reproducible latent pattern of CT that captures interregional profiles of cortical changes in both normative brain maturation and a spectrum of psychiatric disorders. The pubertal timing of the expression of PC1-related genes implicates disrupted neurodevelopment in the pathogenesis of the spectrum of psychiatric diseases emerging during adolescence.


Mental Disorders , Potassium Channels, Voltage-Gated , Adult , Adolescent , Humans , Child , Brain , Mental Disorders/genetics , Mental Disorders/pathology , Aging/genetics , Magnetic Resonance Imaging , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology
9.
Front Neuroimaging ; 2: 1138193, 2023.
Article En | MEDLINE | ID: mdl-38179200

Introduction: There are growing concerns about commonly inflated effect sizes in small neuroimaging studies, yet no study has addressed recalibrating effect size estimates for small samples. To tackle this issue, we propose a hierarchical Bayesian model to adjust the magnitude of single-study effect sizes while incorporating a tailored estimation of sampling variance. Methods: We estimated the effect sizes of case-control differences on brain structural features between individuals who were dependent on alcohol, nicotine, cocaine, methamphetamine, or cannabis and non-dependent participants for 21 individual studies (Total cases: 903; Total controls: 996). Then, the study-specific effect sizes were modeled using a hierarchical Bayesian approach in which the parameters of the study-specific effect size distributions were sampled from a higher-order overarching distribution. The posterior distribution of the overarching and study-specific parameters was approximated using the Gibbs sampling method. Results: The results showed shrinkage of the posterior distribution of the study-specific estimates toward the overarching estimates given the original effect sizes observed in individual studies. Differences between the original effect sizes (i.e., Cohen's d) and the point estimate of the posterior distribution ranged from 0 to 0.97. The magnitude of adjustment was negatively correlated with the sample size (r = -0.27, p < 0.001) and positively correlated with empirically estimated sampling variance (r = 0.40, p < 0.001), suggesting studies with smaller samples and larger sampling variance tended to have greater adjustments. Discussion: Our findings demonstrate the utility of the hierarchical Bayesian model in recalibrating single-study effect sizes using information from similar studies. This suggests that Bayesian utilization of existing knowledge can be an effective alternative approach to improve the effect size estimation in individual studies, particularly for those with smaller samples.

10.
Article En | MEDLINE | ID: mdl-36484846

The course of ADHD from childhood up to young adulthood has been characterized in several studies. However, little is known about the course of symptoms into middle age and beyond. This study aims to evaluate predictors of ADHD trajectories in midlife based on three assessments. The follow-up sample comprised 323 adults with ADHD, evaluated at baseline and seven and thirteen years later, from the average ages of 34 up to 47 years old. ADHD status at reassessments was used to characterize trajectories. Demographics, ADHD features, comorbidities, and polygenic scores for ADHD and genetically correlated psychiatric disorders were evaluated to predict ADHD trajectories. Study retention rate was 67% at T2 (n = 216) and 62% at T3 (n = 199). Data from patients evaluated three times showed that 68.8% coursed stable, 25.5% unstable, and 5.7% remission trajectory of ADHD. Women, individuals with more severe syndromes, higher frequency of comorbidities at reassessments, and genetic liability to depression present a higher probability of a stable trajectory. Our findings shed light on midlife ADHD trajectories and their gender, genomic and clinical correlates.

11.
JAMA Psychiatry ; 79(9): 869-878, 2022 09 01.
Article En | MEDLINE | ID: mdl-35947372

Importance: Past studies have identified associations between brain macrostructure and alcohol use behaviors. However, identifying directional associations between these phenotypes is difficult due to the limitations of observational studies. Objective: To use mendelian randomization (MR) to identify directional associations between brain structure and alcohol use and elucidate the transcriptomic and cellular underpinnings of identified associations. Design, Setting, and Participants: The main source data comprised summary statistics from population-based and case-control genome-wide association studies (GWAS) of neuroimaging, behavioral, and clinical phenotypes (N = 763 874). Using these data, bidirectional and multivariable MR was performed analyzing associations between brain macrostructure and alcohol use. Downstream transcriptome-wide association studies (TWAS) and cell-type enrichment analyses investigated the biology underlying identified associations. The study approach was data driven and did not test any a priori hypotheses. Data were analyzed August 2021 to May 2022. Main Outcomes and Measures: Brain structure phenotypes (global cortical thickness [GCT] and global cortical surface area [GCSA] in 33 709 individuals and left-right subcortical volumes in 19 629 individuals) and alcohol use behaviors (alcoholic drinks per week [DPW] in 537 349 individuals, binge drinking frequency in 143 685 individuals, and alcohol use disorder in 8845 individuals vs 20 657 control individuals [total of 29 502]). Results: The main bidirectional MR analyses were performed in samples totaling 763 874 individuals, among whom more than 94% were of European ancestry, 52% to 54% were female, and the mean cohort ages were 40 to 63 years. Negative associations were identified between genetically predicted GCT and binge drinking (ß, -2.52; 95% CI, -4.13 to -0.91) and DPW (ß, -0.88; 95% CI, -1.37 to -0.40) at a false discovery rate (FDR) of 0.05. These associations remained significant in multivariable MR models that accounted for neuropsychiatric phenotypes, substance use, trauma, and neurodegeneration. TWAS of GCT and alcohol use behaviors identified 5 genes at the 17q21.31 locus oppositely associated with GCT and binge drinking or DPW (FDR = 0.05). Cell-type enrichment analyses implicated glutamatergic cortical neurons in alcohol use behaviors. Conclusions and Relevance: The findings in this study show that the associations between GCT and alcohol use may reflect a predispositional influence of GCT and that 17q21.31 genes and glutamatergic cortical neurons may play a role in this association. While replication studies are needed, these findings should enhance the understanding of associations between brain structure and alcohol use.


Binge Drinking , Mendelian Randomization Analysis , Alcohol Drinking/genetics , Brain/diagnostic imaging , Ethanol , Female , Genome-Wide Association Study , Humans , Male , Mendelian Randomization Analysis/methods , Polymorphism, Single Nucleotide/genetics
12.
Transl Psychiatry ; 12(1): 188, 2022 05 06.
Article En | MEDLINE | ID: mdl-35523763

While there is substantial evidence that cannabis use is associated with differences in human brain development, most of this evidence is correlational in nature. Bayesian causal network (BCN) modeling attempts to identify probable causal relationships in correlational data using conditional probabilities to estimate directional associations between a set of interrelated variables. In this study, we employed BCN modeling in 637 adolescents from the IMAGEN study who were cannabis naïve at age 14 to provide evidence that the accelerated prefrontal cortical thinning found previously in adolescent cannabis users by Albaugh et al. [1] is a result of cannabis use causally affecting neurodevelopment. BCNs incorporated data on cannabis use, prefrontal cortical thickness, and other factors related to both brain development and cannabis use, including demographics, psychopathology, childhood adversity, and other substance use. All BCN algorithms strongly suggested a directional relationship from adolescent cannabis use to accelerated cortical thinning. While BCN modeling alone does not prove a causal relationship, these results are consistent with a body of animal and human research suggesting that adolescent cannabis use adversely affects brain development.


Cannabis , Hallucinogens , Substance-Related Disorders , Adolescent , Bayes Theorem , Cannabis/adverse effects , Cerebral Cortical Thinning , Humans
13.
Biol Psychiatry ; 92(4): 299-313, 2022 08 15.
Article En | MEDLINE | ID: mdl-35489875

BACKGROUND: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. METHODS: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. RESULTS: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. CONCLUSIONS: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy.


Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Bipolar Disorder , Depressive Disorder, Major , Premature Birth , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Cerebral Cortex , Child , Depressive Disorder, Major/pathology , Female , Humans , Infant, Newborn , Magnetic Resonance Imaging/methods , Pregnancy , Premature Birth/pathology
14.
Eur Arch Psychiatry Clin Neurosci ; 272(8): 1395-1411, 2022 Dec.
Article En | MEDLINE | ID: mdl-35322293

One of the main challenges in investigating the neurobiology of ADHD is our limited capacity to study its neurochemistry in vivo. Magnetic resonance spectroscopy (MRS) estimates metabolite concentrations within the brain, but approaches and findings have been heterogeneous. To assess differences in brain metabolites between patients with ADHD and healthy controls, we searched 12 databases screening for MRS studies. Studies were divided into 'children and adolescents' and 'adults' and meta-analyses were performed for each brain region with more than five studies. The quality of studies was assessed by the Newcastle-Ottawa Scale. Thirty-three studies met our eligibility criteria, including 874 patients with ADHD. Primary analyses revealed that the right medial frontal area of children with ADHD presented higher concentrations of a composite of glutamate and glutamine (p = 0.02, SMD = 0.53). Glutamate might be implicated in pruning and neurodegenerative processes as an excitotoxin, while glutamine excess might signal a glutamate depletion that could hinder neurotrophic activity. Both neuro metabolites could be implicated in the differential cortical thinning observed in patients with ADHD across all ages. Notably, more homogeneous designs and reporting guidelines are the key factors to determine how suitable MRS is for research and, perhaps, for clinical psychiatry. Results of this meta-analysis provided an overall map of the brain regions evaluated so far, addressed the role of glutamatergic metabolites in the pathophysiology of ADHD, and pointed to new perspectives for consistent use of the tool in the field.


Attention Deficit Disorder with Hyperactivity , Adult , Child , Adolescent , Humans , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Glutamine/metabolism , Glutamic Acid/metabolism , Magnetic Resonance Spectroscopy/methods , Prefrontal Cortex/metabolism
15.
Drug Alcohol Depend ; 230: 109185, 2022 01 01.
Article En | MEDLINE | ID: mdl-34861493

BACKGROUND: Nicotine and illicit stimulants are very addictive substances. Although associations between grey matter and dependence on stimulants have been frequently reported, white matter correlates have received less attention. METHODS: Eleven international sites ascribed to the ENIGMA-Addiction consortium contributed data from individuals with dependence on cocaine (n = 147), methamphetamine (n = 132) and nicotine (n = 189), as well as non-dependent controls (n = 333). We compared the fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) of 20 bilateral tracts. Also, we compared the performance of various machine learning algorithms in deriving brain-based classifications on stimulant dependence. RESULTS: The cocaine and methamphetamine groups had lower regional FA and higher RD in several association, commissural, and projection white matter tracts. The methamphetamine dependent group additionally showed lower regional AD. The nicotine group had lower FA and higher RD limited to the anterior limb of the internal capsule. The best performing machine learning algorithm was the support vector machine (SVM). The SVM successfully classified individuals with dependence on cocaine (AUC = 0.70, p < 0.001) and methamphetamine (AUC = 0.71, p < 0.001) relative to non-dependent controls. Classifications related to nicotine dependence proved modest (AUC = 0.62, p = 0.014). CONCLUSIONS: Stimulant dependence was related to FA disturbances within tracts consistent with a role in addiction. The multivariate pattern of white matter differences proved sufficient to identify individuals with stimulant dependence, particularly for cocaine and methamphetamine.


Cocaine , Methamphetamine , White Matter , Diffusion Tensor Imaging , Humans , Methamphetamine/adverse effects , Nicotine , White Matter/diagnostic imaging
16.
Dev Cogn Neurosci ; 52: 101042, 2021 12.
Article En | MEDLINE | ID: mdl-34894615

Mixed findings exist in studies comparing brain responses to reward in adolescents and adults. Here we examined the trajectories of brain response, functional connectivity and task-modulated network properties during reward processing with a large-sample longitudinal design. Participants from the IMAGEN study performed a Monetary Incentive Delay task during fMRI at timepoint 1 (T1; n = 1304, mean age=14.44 years old) and timepoint 2 (T2; n = 1241, mean age=19.09 years). The Alcohol Use Disorders Identification Test (AUDIT) was administrated at both T1 and T2 to assess a participant's alcohol use during the past year. Voxel-wise linear mixed effect models were used to compare whole brain response as well as functional connectivity of the ventral striatum (VS) during reward anticipation (large reward vs no-reward cue) between T1 and T2. In addition, task-modulated networks were constructed using generalized psychophysiological interaction analysis and summarized with graph theory metrics. To explore alcohol use in relation to development, participants with no/low alcohol use at T1 but increased alcohol use to hazardous use level at T2 (i.e., participants with AUDIT≤2 at T1 and ≥8 at T2) were compared against those with consistently low scores (i.e., participants with AUDIT≤2 at T1 and ≤7 at T2). Across the whole sample, lower brain response during reward anticipation was observed at T2 compared with T1 in bilateral caudate nucleus, VS, thalamus, midbrain, dorsal anterior cingulate as well as left precentral and postcentral gyrus. Conversely, greater response was observed bilaterally in the inferior and middle frontal gyrus and right precentral and postcentral gyrus at T2 (vs. T1). Increased functional connectivity with VS was found in frontal, temporal, parietal and occipital regions at T2. Graph theory metrics of the task-modulated network showed higher inter-regional connectivity and topological efficiency at T2. Interactive effects between time (T1 vs. T2) and alcohol use group (low vs. high) on the functional connectivity were observed between left middle temporal gyrus and right VS and the characteristic shortest path length of the task-modulated networks. Collectively, these results demonstrate the utility of the MID task as a probe of typical brain response and network properties during development and of differences in these features related to adolescent drinking, a reward-related behaviour associated with heightened risk for future negative health outcomes.


Alcoholism , Adolescent , Adult , Brain/physiology , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Reward , Young Adult
17.
J Neural Transm (Vienna) ; 128(12): 1907-1916, 2021 12.
Article En | MEDLINE | ID: mdl-34609638

ADHD is associated with smaller subcortical brain volumes and cortical surface area, with greater effects observed in children than adults. It is also associated with dysregulation of the HPA axis. Considering the effects of the glucocorticoid receptor (NR3C1) in neurophysiology, we hypothesize that the blurred relationships between brain structures and ADHD in adults could be partly explained by NR3C1 gene variation. Structural T1-weighted images were acquired on a 3 T scanner (N = 166). Large-scale genotyping was performed, and it was followed by quality control and pruning procedures, which resulted in 48 independent NR3C1 gene variants analyzed. After a stringent Bonferroni correction, two SNPs (rs2398631 and rs72801070) moderated the association between ADHD and accumbens and amygdala volumes in adults. The significant SNPs that interacted with ADHD appear to have a role in gene expression regulation, and they are in linkage disequilibrium with NR3C1 variants that present well-characterized physiological functions. The literature-reported associations of ADHD with accumbens and amygdala were only observed for specific NR3C1 genotypes. Our findings reinforce the influence of the NR3C1 gene on subcortical volumes and ADHD. They suggest a genetic modulation of the effects of a pivotal HPA axis component in the neuroanatomical features of ADHD.


Attention Deficit Disorder with Hyperactivity , Receptors, Glucocorticoid , Adult , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/genetics , Brain/diagnostic imaging , Brain/metabolism , Glucocorticoids , Humans , Hypothalamo-Hypophyseal System/metabolism , Magnetic Resonance Imaging , Pituitary-Adrenal System , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
18.
Transl Psychiatry ; 11(1): 252, 2021 04 29.
Article En | MEDLINE | ID: mdl-33911068

White matter (WM) abnormalities in patients with cocaine use disorder (CUD) have been studied; however, the reported effects on the human brain are heterogenous and most results have been obtained from male participants. In addition, biological data supporting the imaging findings and revealing possible mechanisms underlying the neurotoxic effects of chronic cocaine use (CU) on WM are largely restricted to animal studies. To evaluate the neurotoxic effects of CU in the WM, we performed an in vivo diffusion tensor imaging assessment of male and female cocaine users (n = 75) and healthy controls (HC) (n = 58). Moreover, we performed an ex vivo large-scale proteomic analysis using liquid chromatography-tandem mass spectrometry in postmortem brains of patients with CUD (n = 8) and HC (n = 12). Compared with the HC, the CUD group showed significant reductions in global fractional anisotropy (FA) (p < 0.001), and an increase in global mean (MD) and radial diffusion (RD) (both p < 0.001). The results revealed that FA, RD, and MD alterations in the CUD group were widespread along the major WM tracts, after analysis using the tract-based special statistics approach. Global FA was negatively associated with years of CU (p = 0.0421) and female sex (p < 0.001), but not with years of alcohol or nicotine use. Concerning the fibers connecting the left to the right prefrontal cortex, Brodmann area 9 (BA9), the CUD group presented lower FA (p = 0.006) and higher RD (p < 0.001) values compared with the HC group. A negative association between the duration of CU in life and FA values in this tract was also observed (p = 0.019). Proteomics analyses in BA9 found 11 proteins differentially expressed between cocaine users and controls. Among these, were proteins related to myelination and neuroinflammation. In summary, we demonstrate convergent evidence from in vivo diffusion tensor imaging and ex vivo proteomics analysis of WM disruption in CUD.


Cocaine , White Matter , Anisotropy , Brain/diagnostic imaging , Diffusion Tensor Imaging , Female , Humans , Male , Proteomics , White Matter/diagnostic imaging
19.
J Child Psychol Psychiatry ; 62(10): 1202-1219, 2021 10.
Article En | MEDLINE | ID: mdl-33748971

OBJECTIVE: Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. METHODS: We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. RESULTS: There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. CONCLUSION: Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.


Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Adolescent , Adult , Brain/diagnostic imaging , Caudate Nucleus , Child , Humans , Magnetic Resonance Imaging
20.
Trends Psychiatry Psychother ; 43(1): 1-8, 2021.
Article En | MEDLINE | ID: mdl-33681905

Despite major advances in the study of the brain, investigations on neurochemistry in vivo still lack the solid ground of more established methods, such as structural and functional magnetic resonance imaging. Proton magnetic resonance spectroscopy (MRS) is a technique that might potentially fill in this gap. Nevertheless, studies using this approach feature great methodological heterogeneity, such as varying voxel of choice, differences on emphasized metabolites, and absence of a standardized unit. In this study, we present a methodology for creating a systematic review and meta-analysis for this kind of scientific evidence using the prototypical case of attention-deficit/hyperactivity disorder. Systematic review registration: International Prospective Register of Systematic Reviews (PROSPERO), CRD42018112418.


Attention Deficit Disorder with Hyperactivity , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Meta-Analysis as Topic , Proton Magnetic Resonance Spectroscopy , Systematic Reviews as Topic
...