Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article En | MEDLINE | ID: mdl-34521752

CtIP is a DNA end resection factor widely implicated in alternative end-joining (A-EJ)-mediated translocations in cell-based reporter systems. To address the physiological role of CtIP, an essential gene, in translocation-mediated lymphomagenesis, we introduced the T855A mutation at murine CtIP to nonhomologous end-joining and Tp53 double-deficient mice that routinely succumbed to lymphomas carrying A-EJ-mediated IgH-Myc translocations. T855 of CtIP is phosphorylated by ATM or ATR kinases upon DNA damage to promote end resection. Here, we reported that the T855A mutation of CtIP compromised the neonatal development of Xrcc4-/-Tp53-/- mice and the IgH-Myc translocation-driven lymphomagenesis in DNA-PKcs-/-Tp53-/- mice. Mechanistically, the T855A mutation limits DNA end resection length without affecting hairpin opening, translocation frequency, or fork stability. Meanwhile, after radiation, CtIP-T855A mutant cells showed a consistent decreased Chk1 phosphorylation and defects in the G2/M cell cycle checkpoint. Consistent with the role of T855A mutation in lymphomagenesis beyond translocation, the CtIP-T855A mutation also delays splenomegaly in λ-Myc mice. Collectively, our study revealed a role of CtIP-T855 phosphorylation in lymphomagenesis beyond A-EJ-mediated chromosomal translocation.


Carrier Proteins/genetics , Cell Cycle Proteins/genetics , DNA Damage/genetics , Lymphoma/genetics , Lymphoma/pathology , Phosphorylation/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , G2 Phase Cell Cycle Checkpoints/genetics , Mice , Mutation/genetics , Translocation, Genetic/genetics
2.
J Immunol ; 206(6): 1228-1239, 2021 03 15.
Article En | MEDLINE | ID: mdl-33536256

Ataxia-telangiectasia mutated (ATM) kinase is a master regulator of the DNA damage response, and loss of ATM leads to primary immunodeficiency and greatly increased risk for lymphoid malignancies. The FATC domain is conserved in phosphatidylinositol-3-kinase-related protein kinases (PIKKs). Truncation mutation in the FATC domain (R3047X) selectively compromised reactive oxygen species-induced ATM activation in cell-free assays. In this article, we show that in mouse models, knock-in ATM-R3057X mutation (Atm⁠ RX ⁠, corresponding to R3047X in human ATM) severely compromises ATM protein stability and causes T cell developmental defects, B cell Ig class-switch recombination defects, and infertility resembling ATM-null. The residual ATM-R3057X protein retains minimal yet functional measurable DNA damage-induced checkpoint activation and significantly delays lymphomagenesis in Atm⁠ RX/RX ⁠ mice compared with Atm⁠ -/- ⁠. Together, these results support a physiological role of the FATC domain in ATM protein stability and show that the presence of minimal residual ATM-R3057X protein can prevent growth retardation and delay tumorigenesis without restoring lymphocyte development and fertility.


Lymphocytes/immunology , Lymphoma/genetics , Protein Domains/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Carcinogenesis/genetics , Carcinogenesis/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Codon, Nonsense , Disease Models, Animal , Gene Knock-In Techniques , Humans , Lymphocytes/pathology , Lymphoma/immunology , Lymphoma/pathology , Male , Mice , Mice, Knockout , Protein Stability , V(D)J Recombination/genetics , V(D)J Recombination/immunology
3.
Proc Natl Acad Sci U S A ; 117(41): 25700-25711, 2020 10 13.
Article En | MEDLINE | ID: mdl-32989150

To generate antibodies with different effector functions, B cells undergo Immunoglobulin Heavy Chain (IgH) class switch recombination (CSR). The ligation step of CSR is usually mediated by the classical nonhomologous end-joining (cNHEJ) pathway. In cNHEJ-deficient cells, a remarkable ∼25% of CSR can be achieved by the alternative end-joining (Alt-EJ) pathway that preferentially uses microhomology (MH) at the junctions. While A-EJ-mediated repair of endonuclease-generated breaks requires DNA end resection, we show that CtIP-mediated DNA end resection is dispensable for A-EJ-mediated CSR using cNHEJ-deficient B cells. High-throughput sequencing analyses revealed that loss of ATM/ATR phosphorylation of CtIP at T855 or ATM kinase inhibition suppresses resection without altering the MH pattern of the A-EJ-mediated switch junctions. Moreover, we found that ATM kinase promotes Alt-EJ-mediated CSR by suppressing interchromosomal translocations independent of end resection. Finally, temporal analyses reveal that MHs are enriched in early internal deletions even in cNHEJ-proficient B cells. Thus, we propose that repetitive IgH switch regions represent favored substrates for MH-mediated end-joining contributing to the robustness and resection independence of A-EJ-mediated CSR.


Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA End-Joining Repair , Immunoglobulin Class Switching , Immunoglobulin Heavy Chains/genetics , Amino Acid Motifs , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , B-Lymphocytes/metabolism , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Immunoglobulin Heavy Chains/metabolism , Mice , Phosphorylation , Recombination, Genetic
...