Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 47(15): 4439-51, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18355040

RESUMEN

ADP-glucose pyrophosphorylase (ADPGlc PPase) catalyzes the conversion of glucose 1-phosphate and ATP to ADP-glucose and pyrophosphate. As a key step in glucan synthesis, the ADPGlc PPases are highly regulated by allosteric activators and inhibitors in accord with the carbon metabolism pathways of the organism. Crystals of Agrobacterium tumefaciens ADPGlc PPase were obtained using lithium sulfate as a precipitant. A complete anomalous selenomethionyl derivative X-ray diffraction data set was collected with unit cell dimensions a = 85.38 A, b = 93.79 A, and c = 140.29 A (alpha = beta = gamma = 90 degrees ) and space group I 222. The A. tumefaciens ADPGlc PPase model was refined to 2.1 A with an R factor = 22% and R free = 26.6%. The model consists of two domains: an N-terminal alphabetaalpha sandwich and a C-terminal parallel beta-helix. ATP and glucose 1-phosphate were successfully modeled in the proposed active site, and site-directed mutagenesis of conserved glycines in this region (G20, G21, and G23) resulted in substantial loss of activity. The interface between the N- and the C-terminal domains harbors a strong sulfate-binding site, and kinetic studies revealed that sulfate is a competitive inhibitor for the allosteric activator fructose 6-phosphate. These results suggest that the interface between the N- and C-terminal domains binds the allosteric regulator, and fructose 6-phosphate was modeled into this region. The A. tumefaciens ADPGlc PPase/fructose 6-phosphate structural model along with sequence alignment analysis was used to design mutagenesis experiments to expand the activator specificity to include fructose 1,6-bisphosphate. The H379R and H379K enzymes were found to be activated by fructose 1,6-bisphosphate.


Asunto(s)
Agrobacterium tumefaciens/enzimología , Proteínas Bacterianas/química , Glucosa-1-Fosfato Adenililtransferasa/química , Modelos Moleculares , Sitio Alostérico , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Fructosafosfatos/química , Cinética , Datos de Secuencia Molecular , Alineación de Secuencia , Solanum tuberosum/enzimología
2.
Crit Rev Biochem Mol Biol ; 42(2): 95-111, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17453917

RESUMEN

Genetic and biochemical studies have led to the identification of several cellular pathways for the biosynthesis of iron-sulfur proteins in different organisms. The most broadly distributed and highly conserved system involves an Hsp70 chaperone and J-protein co-chaperone system that interacts with a scaffold-like protein involved in [FeS]-cluster preassembly. Specialized forms of Hsp70 and their co-chaperones have evolved in bacteria (HscA, HscB) and in certain fungi (Ssq1, Jac1), whereas most eukaryotes employ a multifunctional mitochondrial Hsp70 (mtHsp70) together with a specialized co-chaperone homologous to HscB/Jac1. HscA and Ssq1 have been shown to specifically bind to a conserved sequence present in the [FeS]-scaffold protein designated IscU in bacteria and Isu in fungi, and the crystal structure of a complex of a peptide containing the IscU recognition region bound to the HscA substrate binding domain has been determined. The interaction of IscU/Isu with HscA/Ssq1 is regulated by HscB/Jac1 which bind the scaffold protein to assist delivery to the chaperone and stabilize the chaperone-scaffold complex by enhancing chaperone ATPase activity. The crystal structure of HscB reveals that the N-terminal J-domain involved in regulation of HscA ATPase activity is similar to other J-proteins, whereas the C-terminal domain is unique and appears to mediate specific interactions with IscU. At the present time the exact function(s) of chaperone-[FeS]-scaffold interactions in iron-sulfur protein biosynthesis remain(s) to be established. In vivo and in vitro studies of yeast Ssq1 and Jac1 indicate that the chaperones are not required for [FeS]-cluster assembly on Isu. Recent in vitro studies using bacterial HscA, HscB and IscU have shown that the chaperones destabilize the IscU[FeS] complex and facilitate cluster delivery to an acceptor apo-protein consistent with a role in regulating cluster release and transfer. Additional genetic and biochemical studies are needed to extend these findings to mtHsp70 activities in higher eukaryotes.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hierro-Azufre/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolución Molecular , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
3.
Biochemistry ; 45(26): 8058-66, 2006 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-16800630

RESUMEN

The Hsp70-class molecular chaperone HscA interacts specifically with a conserved (99)LPPVK(103) motif of the iron-sulfur cluster scaffold protein IscU. We used a cellulose-bound peptide array to perform single-site saturation substitution of peptide residues corresponding to Glu(98)-Ile(104) of IscU to determine positional amino acid requirements for recognition by HscA. Two mutant chaperone forms, HscA(F426A) with a DnaK-like arch structure and HscA(M433V) with a DnaK-like substrate-binding pocket, were also studied. Wild-type HscA and HscA(F426A) exhibited a strict preference for proline in the central peptide position (ELPPVKI), whereas HscA(M433V) bound a peptide containing a Pro-->Leu substitution at this location (ELPLVKI). Contributions of Phe(426) and Met(433) to HscA peptide specificity were further tested in solution using a fluorescence-based peptide-binding assay. Bimane-labeled HscA and HscA(F426A) bound ELPPVKI peptides with higher affinity than leucine-substituted peptides, whereas HscA(M433V) favored binding of ELPLVKI peptides. Fluorescence-binding studies were also carried out with derivatives of the peptide NRLLLTG, a model substrate for DnaK. HscA and HscA(F426A) bound NRLLLTG peptides weakly, whereas HscA(M433V) bound NRLLLTG peptides with higher affinity than IscU-derived peptides ELPPVKI and ELPLVKI. These results suggest that the specificity of HscA for the LPPVK recognition sequence is determined in part by steric obstruction of the hydrophobic binding pocket by Met(433) and that substitution with the Val(433) sidechain imparts a broader, more DnaK-like, substrate recognition pattern.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Cinética , Modelos Moleculares , Fragmentos de Péptidos/química , Péptidos , Conformación Proteica
4.
Biochemistry ; 44(37): 12307-15, 2005 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-16156644

RESUMEN

Hsp70-class molecular chaperones interact with diverse polypeptide substrates, but there is limited information on the structures of different Hsp70-peptide complexes. We have used a site-directed fluorescence labeling and quenching strategy to investigate the orientation of different peptides bound to DnaK from Escherichia coli. DnaK was selectively labeled on opposite sides of the substrate-binding domain (SBD) with the fluorescent probe bimane, and the ability of peptides containing N- or C-terminal tryptophan residues to quench bimane fluorescence was measured. Tryptophan-labeled derivatives of the model peptide NRLLLTG bound with the same forward orientation previously observed in the crystal structure of the DnaK(SBD)-NRLLLTG complex. Derivatives of this peptide containing arginine in the C-terminal rather than N-terminal region, NTLLLRG, also bound in the forward direction indicating that charged residues in the flanking regions of the peptide are not the major determinant of peptide binding orientation. We also tested peptides having proline in one (ELPLVKI) or two (ELPPVKI) central positions. Tryptophan derivatives of each of these peptides bound with a strong preference for the reverse direction relative to that observed for the NRLLLTG and NTLLLRG peptides. Computer modeling the peptides NRLLLTG and ELPPVKI in both the forward and reverse orientations into the DnaK(SBD) indicated that differential hydrogen-bonding patterns and steric constraints of the central peptide residues are likely causes for differences in their binding orientations. These findings establish that DnaK is able to bind substrates in both forward and reverse orientations and suggest that the central residues of the peptide are the major determinants of directional preference.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Oligopéptidos/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Compuestos Bicíclicos Heterocíclicos con Puentes , Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oligopéptidos/química , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
5.
J Biol Chem ; 280(23): 22102-7, 2005 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15824115

RESUMEN

Cytochrome P450eryF (CYP107A) from Saccaropolyspora ertherea catalyzes the hydroxylation of 6-deoxyerythronolide B, one of the early steps in the biosynthesis of erythromycin. P450eryF has an alanine rather than the conserved threonine that participates in the activation of dioxygen (O(2)) in most other P450s. The initial structure of P450eryF (Cupp-Vickery, J. R., Han, O., Hutchinson, C. R., and Poulos, T. L. (1996) Nat. Struct. Biol. 3, 632-637) suggests that the substrate 5-OH replaces the missing threonine OH group and holds a key active site water molecule in position to donate protons to the iron-linked dioxygen, a critical step for the monooxygenase reaction. To probe the proton delivery system in P450eryF, we have solved crystal structures of ferrous wild-type and mutant (Fe(2+)) dioxygen-bound complexes. The catalytic water molecule that was postulated to provide protons to dioxygen is absent, although the substrate 5-OH group donates a hydrogen bond to the iron-linked dioxygen. The hydrogen bond network observed in the wild-type ferrous dioxygen complex, water 63-Glu(360)-Ser(246)-water 53-Ala(241) carbonyl in the I-helix cleft, is proposed as the proton transfer pathway. Consistent with this view, the hydrogen bond network in the O(2).A245S and O(2) .A245T mutants, which have decreased or no enzyme activity, was perturbed or disrupted, respectively. The mutant Thr(245) side chain also perturbs the hydrogen bond between the substrate 5-OH and dioxygen ligand. Contrary to the previously proposed mechanism, these results support the direct involvement of the substrate in O(2) activation but raise questions on the role water plays as a direct proton donor to the iron-linked dioxygen.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Oxigenasas de Función Mixta/química , Oxígeno/química , Alanina/química , Proteínas Bacterianas , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/metabolismo , Enlace de Hidrógeno , Hidroxilación , Hierro/química , Ligandos , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Mutación , Oxígeno/metabolismo , Unión Proteica , Conformación Proteica , Protones , Saccharopolyspora/metabolismo , Treonina/química
6.
Artículo en Inglés | MEDLINE | ID: mdl-16511013

RESUMEN

ADP-glucose pyrophosphorylase catalyzes the conversion of glucose-1-phosphate and ATP to ADP-glucose and pyrophosphate, a key regulated step in both bacterial glycogen and plant starch biosynthesis. Crystals of ADP-glucose pyrophosphorylase from Agrobacterium tumefaciens (420 amino acids, 47 kDa) have been obtained by the sitting-drop vapor-diffusion method using lithium sulfate as a precipitant. A complete native X-ray diffraction data set was collected to a resolution of 2.0 A from a single crystal at 100 K. The crystals belong to space group I222, with unit-cell parameters a = 92.03, b = 141.251, c = 423.64 A. To solve the phase problem, a complete anomalous data set was collected from a selenomethionyl derivative. These crystals display one-fifth of the unit-cell volume of the wild-type crystals, with unit-cell parameters a = 85.38, b = 93.79, c = 140.29 A and space group I222.


Asunto(s)
Agrobacterium tumefaciens/enzimología , Glucosa-1-Fosfato Adenililtransferasa/química , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Glucosa-1-Fosfato Adenililtransferasa/aislamiento & purificación , Conformación Proteica , Difracción de Rayos X
7.
Artículo en Inglés | MEDLINE | ID: mdl-16511138

RESUMEN

HscA is a constitutively expressed Hsp70 that interacts with the iron-sulfur cluster assembly protein IscU. Crystals of a truncated form of HscA (52 kDa; residues 17-505) grown in the presence of an IscU-recognition peptide, WELPPVKI, have been obtained by hanging-drop vapor diffusion using ammonium sulfate as the precipitant. A complete native X-ray diffraction data set was collected from a single crystal at 100 K to a resolution of 2.9 A. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 158.35, b = 166.15, c = 168.26 A, and contains six molecules per asymmetric unit. Phases were determined by molecular replacement using the nucleotide-binding domain from DnaK and the substrate-binding domain from HscA as models. This is the first reported crystallization of an Hsp70 containing both nucleotide- and substrate-binding domains.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/química , Sulfato de Amonio/farmacología , Cristalización , Cristalografía por Rayos X , Modelos Moleculares , Chaperonas Moleculares/química , Nucleótidos/química , Plásmidos/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Difracción de Rayos X
8.
J Mol Biol ; 342(4): 1265-78, 2004 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-15351650

RESUMEN

HscA, a specialized bacterial Hsp70-class molecular chaperone, interacts with the iron-sulfur cluster assembly protein IscU by recognizing a conserved LPPVK sequence motif. We report the crystal structure of the substrate-binding domain of HscA (SBD, residues 389-616) from Escherichia coli bound to an IscU-derived peptide, ELPPVKIHC. The crystals belong to the space group I222 and contain a single molecule in the asymmetric unit. Molecular replacement with the E.coli DnaK(SBD) model was used for phasing, and the HscA(SBD)-peptide model was refined to Rfactor=17.4% (Rfree=21.0%) at 1.95 A resolution. The overall structure of HscA(SBD) is similar to that of DnaK(SBD), although the alpha-helical subdomain (residues 506-613) is shifted up to 10 A relative to the beta-sandwich subdomain (residues 389-498) when compared to DnaK(SBD). The ELPPVKIHC peptide is bound in an extended conformation in a hydrophobic cleft in the beta-subdomain, which appears to be solvent-accessible via a narrow passageway between the alpha and beta-subdomains. The bound peptide is positioned in the reverse orientation of that observed in the DnaK(SBD)-NRLLLTG peptide complex placing the N and C termini of the peptide on opposite sides of the HscA(SBD) relative to the DnaK(SBD) complex. Modeling of the peptide in the DnaK-like forward orientation suggests that differences in hydrogen bonding interactions in the binding cleft and electrostatic interactions involving surface residues near the cleft contribute to the observed directional preference.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Proteínas Hierro-Azufre/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
9.
J Mol Biol ; 338(1): 127-37, 2004 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-15050828

RESUMEN

IscA, an 11 kDa member of the hesB family of proteins, binds iron and [2Fe-2S] clusters, and participates in the biosynthesis of iron-sulfur proteins. We report the crystal structure of the apo-protein form of IscA from Escherichia coli to a resolution of 2.3A. The crystals belong to the space group P3(2)21 and have unit cell dimensions a=b=66.104 A, c=150.167 A (alpha=beta=90 degrees, gamma=120 degrees ). The structure was solved using single-wavelength anomalous dispersion (SAD) phasing of a selenomethionyl derivative, and the IscA model was refined to R=21.4% (Rfree=25.4%). IscA exists as an (alpha1alpha2)2 homotetramer with the (alpha1alpha2) dimer comprising the asymmetric unit. Cys35, implicated in Fe-S cluster assembly, is located in a central cavity formed at the tetramer interface with the gamma-sulfur atoms of residues from the alpha1 and alpha2' monomers (and alpha1'alpha2) positioned close to one another (approximately equal 7 A). C-terminal residues 99-107 are disordered, and the exact positions of Cys99 and Cys101 could not be determined. However, computer modeling of C-terminal residues in the tetramer suggests that Cys99 and Cys101 in the alpha1 monomer and those of the alpha1' monomer (or alpha2 and alpha2') are positioned sufficiently close to coordinate [2Fe-2S] clusters between the two dimers, whereas this is not possible within the (alpha1alpha2) or (alpha1'alpha2') dimer. This symmetrical arrangement allows for binding of two [2Fe-2S] clusters on opposite sides of the tetramer. Modeling further reveals that Cys101 is positioned sufficiently close to Cys35 to allow Cys35 to participate in cluster assembly, formation, or transfer.


Asunto(s)
Escherichia coli/química , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Secuencia de Aminoácidos , Análisis por Conglomerados , Simulación por Computador , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica
10.
J Mol Biol ; 330(5): 1049-59, 2003 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-12860127

RESUMEN

IscS is a widely distributed cysteine desulfurase that catalyzes the pyridoxal phosphate-dependent desulfuration of L-cysteine and plays a central role in the delivery of sulfur to a variety of metabolic pathways. We report the crystal structure of Escherichia coli IscS to a resolution of 2.1A. The crystals belong to the space group P2(1)2(1)2(1) and have unit cell dimensions a=73.70A, b=101.97A, c=108.62A (alpha=beta=gamma=90 degrees ). Molecular replacement with the Thermotoga maritima NifS model was used to determine phasing, and the IscS model was refined to an R=20.6% (R(free)=23.6%) with two molecules per asymmetric unit. The structure of E.coli IscS is similar to that of T.maritima NifS with nearly identical secondary structure and an overall backbone r.m.s. difference of 1.4A. However, in contrast to NifS a peptide segment containing the catalytic cysteine residue (Cys328) is partially ordered in the IscS structure. This segment of IscS (residues 323-335) forms a surface loop directed away from the active site pocket. Cys328 is positioned greater than 17A from the pyridoxal phosphate cofactor, suggesting that a large conformational change must occur during catalysis in order for Cys328 to participate in nucleophilic attack of a pyridoxal phosphate-bound cysteine substrate. Modeling suggests that rotation of this loop may allow movement of Cys328 to within approximately 3A of the pyridoxal phosphate cofactor.


Asunto(s)
Liasas de Carbono-Azufre/química , Escherichia coli/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Cristalografía por Rayos X , Cisteína/química , Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Thermotoga maritima/enzimología
11.
J Biol Chem ; 278(39): 37582-9, 2003 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-12871959

RESUMEN

Hsc66 (HscA) and Hsc20 (HscB) from Escherichia coli comprise a specialized chaperone system that selectively binds the iron-sulfur cluster template protein IscU. Hsc66 interacts with peptides corresponding to a discrete region of IscU including residues 99-103 (LPPVK), and a peptide containing residues 98-106 stimulates Hsc66 ATPase activity in a manner similar to IscU. To determine the relative contributions of individual residues in the LPPVK motif to Hsc66 binding and regulation, we have carried out an alanine mutagenesis scan of this motif in the Glu98-Cys106 peptide and the IscU protein. Alanine substitutions in the Glu98-Cys106 peptide resulted in decreased ATPase stimulation (2-10-fold) because of reduced binding affinity, with peptide(P101A) eliciting <10% of the parent peptide stimulation. Alanine substitutions in the IscU protein also revealed lower activities resulting from decreased apparent binding affinity, with the greatest changes in Km observed for the Pro101 (77-fold), Val102 (4-fold), and Lys103 (15-fold) mutants. Calorimetric studies of the binding of IscU mutants to the Hsc66.ADP complex showed that the P101A and K103A mutants also exhibit decreased binding affinity for the ADP-bound state. When ATPase stimulatory activity was assayed in the presence of the co-chaperone Hsc20, each of the mutants displayed enhanced binding affinity, but the P101A and V102A mutants exhibited decreased ability to maximally simulate Hsc66 ATPase. A charge mutant containing the motif sequence of NifU, IscU(V102E), did not bind the ATP or ADP states of Hsc66 but did bind Hsc20 and weakly stimulated Hsc66 ATPase in the presence of the co-chaperone. These results indicate that residues in the LPPVK motif are important for IscU interactions with Hsc66 but not for the ability of Hsc20 to target IscU to Hsc66. The results are discussed in the context of a structural model based on the crystallographic structure of the DnaK peptide-binding domain.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hierro-Azufre/química , Chaperonas Moleculares/metabolismo , Secuencias de Aminoácidos , Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares
12.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 7): 1224-5, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12077450

RESUMEN

IscS is a widely distributed cysteine desulfurase that catalyzes the pyridoxal phosphate dependent beta-elimination of sulfur from L-cysteine and plays a central role in the delivery of sulfur to a variety of metabolic pathways. Crystals of Escherichia coli IscS have been obtained by the hanging-drop vapor-diffusion method using polyethylene glycol (PEG) as a precipitant. Initial seed crystals were obtained using PEG 6000 and sodium acetate, and diffraction-quality crystals were grown using a mixture of PEG 2000 and PEG 10 000 in the presence of sodium citrate. A complete native X-ray diffraction data set was collected from a single crystal at 103 K to a resolution of 2.1 A. The crystals belong to space group P2(1)2(1)2(1) and have unit-cell parameters a = 73.7086, b = 101.9741, c = 108.617 A (alpha = beta = gamma = 90 degrees ). Analysis of the Matthews equation and self-rotation function suggest two molecules per asymmetric unit, consistent with the presence of a single dimeric molecule.


Asunto(s)
Liasas de Carbono-Azufre/química , Cristalografía por Rayos X/métodos , Dominio Catalítico , Dimerización , Escherichia coli/enzimología , Polietilenglicoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA