Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(10): 18, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39120913

RESUMEN

Purpose: A micrometer scale hyporeflective band within the retinal pigment epithelium basal lamina - Bruch's membrane complex (RPE-BL-BrM) was topographically measured in aging and age-related macular degeneration (AMD). Methods: In a prospective cross-sectional study, 90 normal eyes from 76 subjects (range = 23-90 years) and 53 dry AMD eyes from 47 subjects (range = 62-91 years) were enrolled. Isotropic volume raster scans over 6 mm × 6 mm (500 × 500 A-scans) were acquired using a high-resolution (2.7 µm axial resolution) spectral-domain optical coherence tomography (SD-OCT) prototype instrument. Six consecutive optical coherence tomography (OCT) volumes were computationally motion-corrected and fused to improve feature visibility. A boundary regression neural network was developed to measure hyporeflective band thickness. Topographic dependence was evaluated over a 6-mm-diameter Early Treatment Diabetic Retinopathy Study (ETDRS) grid. Results: The hyporeflective band thickness map (median of 4.3 µm and 7.8 µm in normal and AMD eyes, respectively) is thicker below and radially symmetric around the fovea. In normal eyes, age-associated differences occur within 0.7 to 2.3 mm from the foveal center (P < 0.05). In AMD eyes, the hyporeflective band is hypothesized to be basal laminar deposits (BLamDs) and is thicker within the 3-mm ETDRS circle (P < 0.0002) compared with normal eyes. The inner ring is the most sensitive location to detect age versus AMD-associated changes within the RPE-BL-BrM. AMD eyes with subretinal drusenoid deposits (SDDs) have a significantly thicker hyporeflective band (P < 0.001) than those without SDDs. Conclusions: The hyporeflective band is a quantifiable biomarker which differentiates AMD from aging. Longitudinal studies are warranted. The hyporeflective band may be a useful biomarker for risk stratification and disease progression.


Asunto(s)
Envejecimiento , Epitelio Pigmentado de la Retina , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Anciano , Persona de Mediana Edad , Estudios Prospectivos , Estudios Transversales , Femenino , Masculino , Anciano de 80 o más Años , Envejecimiento/fisiología , Adulto , Adulto Joven , Lámina Basal de la Coroides/patología , Lámina Basal de la Coroides/diagnóstico por imagen , Degeneración Macular/diagnóstico , Degeneración Macular/fisiopatología
2.
Front Cell Neurosci ; 18: 1409405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994326

RESUMEN

The fovea of the human retina, a specialization for acute and color vision, features a high concentration of cone photoreceptors. A pit on the inner retinal aspect is created by the centrifugal migration of post-receptoral neurons. Foveal cells are specified early in fetal life, but the fovea reaches its final configuration postnatally. Pre-term birth retards migration resulting in a small pit, a small avascular zone, and nearly continuous inner retinal layers. To explore the involvement of Müller glia, we used serial-section electron microscopic reconstructions to examine the morphology and neural contacts of Müller glia contacting a single foveal cone in a 28-year-old male organ donor born at 28 weeks of gestation. A small non-descript foveal avascular zone contained massed glial processes that included a novel class of 'inner' Müller glia. Similar to classic 'outer' Müller glia that span the retina, inner Müller glia have bodies in the inner nuclear layer (INL). These cells are densely packed with intermediate filaments and insert processes between neurons. Unlike 'outer' Müller glia, 'inner' Müller glia do not reach the external limiting membrane but instead terminate at the outer plexiform layer. One completely reconstructed inner cell ensheathed cone pedicles and a cone-driven circuit of midget bipolar and ganglion cells. Inner Müller glia outnumber foveal cones by 1.8-fold in the outer nuclear layer (221,448 vs. 123,026 cells/mm2). Cell bodies of inner Müller glia outnumber those of outer Müller glia by 1.7-fold in the INL (41,872 vs. 24,631 cells/ mm2). Müller glia account for 95 and 80% of the volume of the foveal floor and Henle fiber layer, respectively. Determining whether inner cells are anomalies solely resulting from retarded lateral migration of inner retinal neurons in pre-term birth requires further research.

3.
Invest Ophthalmol Vis Sci ; 65(8): 40, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39042400

RESUMEN

Purpose: In aging and early-intermediate age-related macular degeneration (AMD), rod-mediated dark adaptation (RMDA) slows more at 5° superior than at 12°. Using optical coherence tomography angiography (OCTA), we asked whether choriocapillaris flow deficits are related to distance from the fovea. Methods: Persons ≥60 years stratified for AMD via the Age-Related Eye Disease Study's nine-step system underwent RMDA testing. Two adjacent 4.4° × 4.4° choriocapillaris OCTA slabs were centered on the fovea and 12° superior. Flow signal deficits (FD%) in concentric arcs (outer radii in mm, 0.5, 1.5, 2.2, 4.0, and 5.0 superior) were correlated with rod intercept time (RIT) and best-corrected visual acuity (BCVA). Results: In 366 eyes (170 normal, 111 early AMD, 85 intermediate AMD), FD% was significantly worse with greater AMD severity in all regions (overall P < 0.05) and poorest under the fovea (P < 0.0001). In pairwise comparisons, FD% worsened with greater AMD severity (P < 0.05) at distances <2.2 mm. At greater distances, eyes with intermediate, but not early AMD differed from normal eyes. Foveal FD% was more strongly associated with longer RIT at 5° (r = 0.52) than RIT at 12° (r = 0.39) and BCVA (r = 0.21; all P < 0.0001). Choroidal thickness was weakly associated with longer RIT at 5° and 12° (r = 0.10-0.20, P < 0.05) and not associated with AMD severity. Conclusions: Reduced transport across the choriocapillaris-Bruch's membrane-retinal pigment epithelium complex, which contributes to drusen formation under the macula lutea (and fovea), may also reduce retinoid resupply to rods encircling the high-risk area. FD% has potential as a functionally validated imaging biomarker for AMD emergence.


Asunto(s)
Envejecimiento , Coroides , Adaptación a la Oscuridad , Angiografía con Fluoresceína , Fóvea Central , Degeneración Macular , Tomografía de Coherencia Óptica , Agudeza Visual , Humanos , Coroides/irrigación sanguínea , Coroides/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Masculino , Anciano , Femenino , Agudeza Visual/fisiología , Fóvea Central/diagnóstico por imagen , Fóvea Central/patología , Fóvea Central/irrigación sanguínea , Fóvea Central/fisiopatología , Envejecimiento/fisiología , Persona de Mediana Edad , Degeneración Macular/fisiopatología , Angiografía con Fluoresceína/métodos , Anciano de 80 o más Años , Adaptación a la Oscuridad/fisiología
5.
Acta Ophthalmol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860298

RESUMEN

Central serous chorioretinopathy (CSC) is a frequently occurring chorioretinal disease, that is commonly associated with subretinal fluid accumulation in a generally young population. Even though choroidal abnormalities have been found to be of importance, the exact pathogenesis of CSC is still being learned. The origin of pigment epithelial detachments, seen in many CSC patients, is also unclear. Based on the follow-up of a CSC patient for more than 5 years, we hypothesize that intraocular pressure and, by extension, the pressure gradient across the Bruch's membrane, may be one factor in the pathogenesis of pigment epithelial detachments in CSC, which might very well have implications for the occurrence of and possible ways to prevent subretinal fluid in CSC.

7.
Invest Ophthalmol Vis Sci ; 65(5): 17, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717424

RESUMEN

Purpose: We aimed to identify structural differences in normal eyes, early age-related macular degeneration (AMD), and intermediate AMD eyes using optical coherence tomography (OCT) in a well-characterized, large cross-sectional cohort. Methods: Subjects ≥ 60 years with healthy normal eyes, as well as early or intermediate AMD were enrolled in the Alabama Study on Age-related Macular Degeneration 2 (ALSTAR2; NCT04112667). Using Spectralis HRA + OCT2, we obtained macular volumes for each participant. An auto-segmentation software was used to segment six layers and sublayers: photoreceptor inner and outer segments, subretinal drusenoid deposits (SDDs), retinal pigment epithelium + basal lamina (RPE + BL), drusen, and choroid. After manually refining the segmentations of all B-scans, mean thicknesses in whole, central, inner and outer rings of the ETDRS grid were calculated and compared among groups. Results: This study involved 502 patients, 252 were healthy, 147 had early AMD, and 103 had intermediate AMD eyes (per Age-Related Eye Disease Study [AREDS] 9-step). Intermediate AMD eyes exhibited thicker SDD and drusen, thinner photoreceptor inner segments, and RPE compared to healthy and early AMD eyes. They also had thicker photoreceptor outer segments than early AMD eyes. Early AMD eyes had thinner photoreceptor outer segments than normal eyes but a thicker choroid than intermediate AMD eyes. Using the Beckman scale, 42% of the eyes initially classified as early AMD shifted to intermediate AMD, making thickness differences for photoreceptor outer segments and choroid insignificant. Conclusions: With AMD stages, the most consistent structural differences involve appearance of drusen and SDD, followed by RPE + BL thickness, and then thickness of photoreceptor inner and outer segments. Structural changes in the transition from aging to intermediate AMD include alterations in the outer retinal bands, including the appearance of deposits on either side of the RPE.


Asunto(s)
Coroides , Degeneración Macular , Drusas Retinianas , Epitelio Pigmentado de la Retina , Tomografía de Coherencia Óptica , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Coroides/patología , Coroides/diagnóstico por imagen , Estudios Transversales , Degeneración Macular/diagnóstico , Drusas Retinianas/diagnóstico , Segmento Externo de las Células Fotorreceptoras Retinianas/patología , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Agudeza Visual/fisiología
8.
Invest Ophthalmol Vis Sci ; 65(5): 16, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717425

RESUMEN

Purpose: Research on Alzheimer's disease (AD) and precursor states demonstrates a thinner retinal nerve fiber layer (NFL) compared to age-similar controls. Because AD and age-related macular degeneration (AMD) both impact older adults and share risk factors, we asked if retinal layer thicknesses, including NFL, are associated with cognition in AMD. Methods: Adults ≥ 70 years with normal retinal aging, early AMD, or intermediate AMD per Age-Related Eye Disease Study (AREDS) nine-step grading of color fundus photography were enrolled in a cross-sectional study. Optical coherence tomography (OCT) volumes underwent 11-line segmentation and adjustments by a trained operator. Evaluated thicknesses reflect the vertical organization of retinal neurons and two vascular watersheds: NFL, ganglion cell layer-inner plexiform layer complex (GCL-IPL), inner retina, outer retina (including retinal pigment epithelium-Bruch's membrane), and total retina. Thicknesses were area weighted to achieve mean thickness across the 6-mm-diameter Early Treatment of Diabetic Retinopathy Study (ETDRS) grid. Cognitive status was assessed by the National Institutes of Health Toolbox cognitive battery for fluid and crystallized cognition. Correlations estimated associations between cognition and thicknesses, adjusting for age. Results: Based on 63 subjects (21 per group), thinning of the outer retina was significantly correlated with lower cognition scores (P < 0.05). No other retinal thickness variables were associated with cognition. Conclusions: Only the outer retina (photoreceptors, supporting glia, retinal pigment epithelium, Bruch's membrane) is associated with cognition in aging to intermediate AMD; NFL was not associated with cognition, contrary to AD-associated condition reports. Early and intermediate AMD constitute a retinal disease whose earliest, primary impact is in the outer retina. Our findings hint at a unique impact on the brain from the outer retina in persons with AMD.


Asunto(s)
Envejecimiento , Cognición , Degeneración Macular , Retina , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Masculino , Anciano , Femenino , Estudios Transversales , Envejecimiento/fisiología , Anciano de 80 o más Años , Degeneración Macular/fisiopatología , Cognición/fisiología , Retina/diagnóstico por imagen , Retina/patología , Retina/fisiopatología , Fibras Nerviosas/patología , Células Ganglionares de la Retina/patología
9.
Ophthalmologica ; : 1-13, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38599207

RESUMEN

INTRODUCTION: The aims of the study were to describe baseline quantitative (short-wavelength) autofluorescence (qAF) findings in a large pseudophakic cohort at age-related macular degeneration (AMD)'s beginnings and to assess qAF8 as an outcome measure and evaluate Age-Related Eye Disease Study (AREDS) and Beckman grading systems. METHODS: In the ALSTAR2 baseline cohort (NCT04112667), 346 pseudophakic eyes of 188 persons (74.0 ± 5.5 years) were classified as normal (N = 160 by AREDS, 158 by Beckman), early AMD (eAMD) (N = 104, 66), and intermediate AMD (iAMD) (N = 82, 122). Groups were compared via mean qAF intensities in a 6°-8° annulus (qAF8) and maps of differences between observations and the overall mean, divided by standard deviation (Z-score). RESULTS: qAF8 did not differ significantly among diagnostic groups by either stratification (p = 0.0869 AREDS; p = 0.0569 by Beckman). Notably, 45 eyes considered eAMD by AREDS became iAMD by Beckman. For AREDS-stratified eyes, Z-score maps showed higher centrally located qAF for normal, near the mean in eAMD, and lower values for iAMD. Maps deviated from this pattern for Beckman-stratified eyes. CONCLUSIONS: In a large sample of pseudophakic eyes, qAF8 does not differ overall from normal aging to iAMD but also does not capture the earliest AMD activity in the macula lutea. AREDS classification gives results more consistent with a slow decline in histologic autofluorescence than Beckman classification.

10.
Curr Eye Res ; 49(7): 725-730, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38439539

RESUMEN

PURPOSE: The vulnerability of rod photoreceptors in aging and early and intermediate age-related macular degeneration (AMD) has been well documented. Rod-mediated dark adaptation (RMDA) is a measure of the recovery of light sensitivity in rod photoreceptors following a bright light. Delays in RMDA during early and intermediate AMD have been widely reported. For RMDA's promise as an outcome for trials targeted at early and intermediate AMD to be realized, excellent test-retest reliability, its repeatability, must be established. METHODS: Test-retest performance in a commonly used RMDA test based on the rod intercept time metric (RIT) was evaluated in participants with early and intermediate AMD and with normal retinal aging with testing approximately 2 weeks apart. The test target was placed at 5° eccentricity superior to the foveal center, an area with maximal rod loss in aging and AMD. Disease severity was identified by a trained and masked grader of fundus photographs using both the AREDS 9-step and Beckman classification systems. Bland-Altman plots and intra-class correlation coefficients (ICC) evaluated repeatability. RESULTS: The analysis sample consisted of 37 older adults (mean age 76 years, standard deviation 5), with approximately one-third of the sample in each of three groups - normal aging, early AMD, and intermediate AMD. For the total sample, the ICC was 0.98. For individual AMD groups for both AREDS 9-step and Beckman classifications, the ICCs were also very high ranging from 0.82 to 0.99. CONCLUSION: We demonstrated that RMDA testing using the RIT metric has excellent repeatability when target location is at 5° in studying older adults from normal aging to intermediate AMD, suggesting the reliable use of this functional measure in trials.


Asunto(s)
Envejecimiento , Adaptación a la Oscuridad , Degeneración Macular , Células Fotorreceptoras Retinianas Bastones , Agudeza Visual , Humanos , Adaptación a la Oscuridad/fisiología , Anciano , Células Fotorreceptoras Retinianas Bastones/fisiología , Masculino , Femenino , Reproducibilidad de los Resultados , Envejecimiento/fisiología , Agudeza Visual/fisiología , Degeneración Macular/fisiopatología , Degeneración Macular/diagnóstico , Anciano de 80 o más Años , Persona de Mediana Edad , Pruebas de Visión
11.
FASEB J ; 38(5): e23522, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38445789

RESUMEN

Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (APOB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic depletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor-associated cholesterol deposits, and photoreceptor cell death, and loss of rod but not cone function. RPE-specific reduction in Mttp had no significant effect on plasma lipids and lipoproteins. While APOB was decreased in the RPE, most ocular retinoids remained unchanged, with the exception of the storage form of retinoid, retinyl ester. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but is not directly involved in plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.


Asunto(s)
Proteínas Portadoras , Retina , Epitelio Pigmentado de la Retina , Animales , Ratones , Retinoides , Apolipoproteínas B/genética , Homeostasis
12.
Invest Ophthalmol Vis Sci ; 65(3): 4, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38466281

RESUMEN

A progression sequence for age-related macular degeneration onset may be determinable with consensus neuroanatomical nomenclature augmented by drusen biology and eye-tracked clinical imaging. This narrative review proposes to supplement the Early Treatment of Diabetic Retinopathy Study (sETDRS) grid with a ring to capture high rod densities. Published photoreceptor and retinal pigment epithelium (RPE) densities in flat mounted aged-normal donor eyes were recomputed for sETDRS rings including near-periphery rich in rods and cumulatively for circular fovea-centered regions. Literature was reviewed for tissue-level studies of aging outer retina, population-level epidemiology studies regionally assessing risk, vision studies regionally assessing rod-mediated dark adaptation (RMDA), and impact of atrophy on photopic visual acuity. The 3 mm-diameter xanthophyll-rich macula lutea is rod-dominant and loses rods in aging whereas cone and RPE numbers are relatively stable. Across layers, the largest aging effects are accumulation of lipids prominent in drusen, loss of choriocapillary coverage of Bruch's membrane, and loss of rods. Epidemiology shows maximal risk for drusen-related progression in the central subfield with only one third of this risk level in the inner ring. RMDA studies report greatest slowing at the perimeter of this high-risk area. Vision declines precipitously when the cone-rich central subfield is invaded by geographic atrophy. Lifelong sustenance of foveal cone vision within the macula lutea leads to vulnerability in late adulthood that especially impacts rods at its perimeter. Adherence to an sETDRS grid and outer retinal cell populations within it will help dissect mechanisms, prioritize research, and assist in selecting patients for emerging treatments.


Asunto(s)
Atrofia Geográfica , Mácula Lútea , Degeneración Macular , Humanos , Adulto , Anciano , Retina , Células Fotorreceptoras Retinianas Conos
13.
Ophthalmol Sci ; 4(3): 100449, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313399

RESUMEN

Purpose: To review the evidence for imaging modalities in assessing the vascular component of diabetic retinal disease (DRD), to inform updates to the DRD staging system. Design: Standardized narrative review of the literature by an international expert workgroup, as part of the DRD Staging System Update Effort, a project of the Mary Tyler Moore Vision Initiative. Overall, there were 6 workgroups: Vascular Retina, Neural Retina, Systemic Health, Basic and Cellular Mechanisms, Visual Function, and Quality of Life. Participants: The Vascular Retina workgroup, including 16 participants from 4 countries. Methods: Literature review was conducted using standardized evidence grids for 5 modalities: standard color fundus photography (CFP), widefield color photography (WFCP), standard fluorescein angiography (FA), widefield FA (WFFA), and OCT angiography (OCTA). Summary levels of evidence were determined on a validated scale from I (highest) to V (lowest). Five virtual workshops were held for discussion and consensus. Main Outcome Measures: Level of evidence for each modality. Results: Levels of evidence for standard CFP, WFCP, standard FA, WFFA, and OCTA were I, II, I, I, and II respectively. Traditional vascular lesions on standard CFP should continue to be included in an updated staging system, but more studies are required before they can be used in posttreatment eyes. Widefield color photographs can be used for severity grading within the area covered by standard CFPs, although these gradings may not be directly interchangeable with each other. Evaluation of the peripheral retina on WFCP can be considered, but the method of grading needs to be clarified and validated. Standard FA and WFFA provide independent prognostic value, but the need for dye administration should be considered. OCT angiography has significant potential for inclusion in the DRD staging system, but various barriers need to be addressed first. Conclusions: This study provides evidence-based recommendations on the utility of various imaging modalities for assessment of the vascular component of DRD, which can inform future updates to the DRD staging system. Although new imaging modalities offer a wealth of information, there are still major gaps and unmet research needs that need to be addressed before this potential can be realized. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

14.
Invest Ophthalmol Vis Sci ; 65(2): 1, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300559

RESUMEN

Purpose: Lack of valid end points impedes developing therapeutic strategies for early age-related macular degeneration (AMD). Delayed rod-mediated dark adaptation (RMDA) is the first functional biomarker for incident early AMD. The relationship between RMDA and the status of outer retinal bands on optical coherence tomography (OCT) have not been well defined. This study aims to characterize these relationships in early and intermediate AMD. Methods: Baseline data from 476 participants was assessed including eyes with early AMD (n = 138), intermediate AMD (n = 101), and normal aging (n = 237). Participants underwent volume OCT imaging of the macula and rod intercept time (RIT) was measured. The ellipsoid zone (EZ) and interdigitation zone (IZ) on all OCT B-scans of the volumes were segmented. The area of detectable EZ and IZ, and mean thickness of IZ within the Early Treatment Diabetic Retinopathy Study (ETDRS) grid were computed and associations with RIT were assessed by Spearman's correlation coefficient and age adjusted. Results: Delayed RMDA (longer RIT) was most strongly associated with less preserved IZ area (r = -0.591; P < 0.001), followed by decreased IZ thickness (r = -0.434; P < 0.001), and EZ area (r = -0.334; P < 0.001). This correlation between RIT and IZ integrity was not apparent when considering normal eyes alone within 1.5 mm of the fovea. Conclusions: RMDA is correlated with the status of outer retinal bands in early and intermediate AMD eyes, particularly, the status of the IZ. This correlation is consistent with a previous analysis of only foveal B-scans and is biologically plausible given that retinoid availability, involving transfer at the interface attributed to the IZ, is rate-limiting for RMDA.


Asunto(s)
Mácula Lútea , Degeneración Macular , Humanos , Degeneración Macular/diagnóstico , Retina , Fóvea Central , Biomarcadores , Nonoxinol
16.
Ophthalmol Sci ; 4(3): 100450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327842

RESUMEN

Purpose: To investigate the use of super-resolution imaging techniques to enable telepathology using low-cost commercial cameras. Design: Experimental study. Participants: A total of 139 ophthalmic pathology slides obtained from the Ophthalmic Pathology service at the University of California, Irvine. Methods: Denoising Diffusion Probabilistic Model (DDPM) was developed to predict super-resolution pathology slide images from low-resolution inputs. The model was pretrained using 150 000 images randomly sampled from the ImageNet dataset. Patch aggregation was used to generate large images with DDPM. The performance of DDPM was evaluated against that of generative adversarial networks (GANs) and Robust UNet, which were also trained on the same dataset. Main Outcome Measures: The performance of models trained to generate super-resolution output images from low-resolution input images can be evaluated by using the mean squared error (MSE) and Structural Similarity Index Measure (SSIM), as well as subjective grades provided by expert pathologist graders. Results: In total, our study included 110 training images, 9 validation images, and 20 testing images. The objective performance scores were averaged over patches generated from 20 test images. The DDPM-based approach with pretraining produced the best results, with an MSE score of 1.35e-5 and an SSIM score of 0.8987. A qualitative analysis of super-resolution images was conducted by expert 3 pathologists and 1 expert ophthalmic microscopist, and the average accuracy of identifying the correct ground truth images ranged from 25% to 70% (with an average accuracy of 46.5%) for widefield images and 25% to 60% (with an average accuracy of 38.25%) for individual patches. Conclusions: The DDPM-based approach with pretraining is assessed to be effective at super-resolution prediction for ophthalmic pathology slides both in terms of objective and subjective measures. The proposed methodology is expected to decrease the reliance on costly slide scanners for acquiring high-quality pathology slide images, while also streamlining clinical workflow and expanding the scope of ophthalmic telepathology. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

17.
Exp Eye Res ; 240: 109807, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278468

RESUMEN

Subretinal fluid (SRF) accumulates between photoreceptor outer segments and retinal pigment epithelium during rhegmatogenous retinal detachment. Biomolecular components such as lipids originate from cells surrounding the SRF. Knowledge of the composition of these molecules in SRF potentially provides mechanistic insight into the physiologic transfer of lipids between retinal tissue compartments. Using mass spectrometry and tandem mass spectrometry analysis on an electrospray ionization quadrupole-time-of-flight mass spectrometer, we identified a total of 115 lipid molecular species of 11 subclasses and 9 classes in two samples from two patients with rhegmatogenous retinal detachment. These included 47 glycerophosphocholines, 6 glycerophosphoethanolamines, 1 glycerophosphoinositol, 18 sphingomyelins, 9 cholesteryl esters, free cholesterol, 3 ceramides, 22 triacylglycerols and 8 free fatty acids. Glycerophosphocholines were of the highest intensity. By minimizing the formation of different adduct forms or clustering ions of different adducts, we determined the relative intensity of lipid molecular species within the same subclasses. The profiles were compared with those of retinal cells available in the published literature. The glycerophosphocholine profile of SRF was similar to that of cone outer segments, suggesting that outer segment degradation products are constitutively released into the interphotoreceptor matrix, appearing in SRF during detachment. This hypothesis was supported by the retinal distributions of corresponding lipid synthases' mRNA expression obtained from an online resource based on publicly available single-cell sequencing data. In contrast, based on lipid profiles and relevant gene expression in this study, the sources of free cholesterol and cholesteryl esters in SRF appeared more ambiguous, possibly reflecting that outer retina takes up plasma lipoproteins. Further studies to identify and quantify lipids in SRF will help better understand etiology of diseases relevant to outer retina.


Asunto(s)
Desprendimiento de Retina , Humanos , Desprendimiento de Retina/metabolismo , Líquido Subretiniano/metabolismo , Ésteres del Colesterol/metabolismo , Lipidómica , Retina/metabolismo
18.
Invest Ophthalmol Vis Sci ; 65(1): 10, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38170540

RESUMEN

Purpose: Retinal pigment epithelium (RPE) cells show strong autofluorescence (AF). Here, we characterize the AF spectra of individual RPE cells in healthy eyes and those affected by age-related macular degeneration (AMD) and investigate associations between AF spectral response and the number of intracellular AF granules per cell. Methods: RPE-Bruch's membrane flatmounts of 22 human donor eyes, including seven AMD-affected eyes (early AMD, three; geographic atrophy, one; neovascular, three) and 15 unaffected macula (<51 years, eight; >80 years, seven), were imaged at the fovea, perifovea, and near-periphery using confocal AF microscopy (excitation 488 nm), and emission spectra were recorded (500-710 nm). RPE cells were manually segmented with computer assistance and stratified by disease status, and emission spectra were analyzed using cubic spline transforms. Intracellular granules were manually counted and classified. Linear mixed models were used to investigate associations between spectra and the number of intracellular granules. Results: Spectra of 5549 RPE cells were recorded. The spectra of RPE cells in healthy eyes showed similar emission curves that peaked at 580 nm for fovea and perifovea and at 575 and 580 nm for near-periphery. RPE spectral curves in AMD eyes differed significantly, being blue shifted by 10 nm toward shorter wavelengths. No significant association coefficients were found between wavelengths and granule counts. Conclusions: This large series of RPE cell emission spectra at precisely predefined retinal locations showed a hypsochromic spectral shift in AMD. Combining different microscopy techniques, our work has identified cellular RPE spectral AF and subcellular granule properties that will inform future in vivo investigations using single-cell imaging.


Asunto(s)
Atrofia Geográfica , Mácula Lútea , Degeneración Macular , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Degeneración Macular/diagnóstico , Degeneración Macular/metabolismo , Lámina Basal de la Coroides/metabolismo , Atrofia Geográfica/metabolismo , Mácula Lútea/metabolismo
19.
Invest Ophthalmol Vis Sci ; 64(15): 35, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38133501

RESUMEN

Purpose: Despite the centrality of the retinal pigment epithelium (RPE) in vision and retinopathy our picture of RPE morphology is incomplete. With a volumetric reconstruction of human RPE ultrastructure, we aim to characterize major membranous features including apical processes and their interactions with photoreceptor outer segments, basolateral infoldings, and the distribution of intracellular organelles. Methods: A parafoveal retinal sample was acquired from a 21-year-old male organ donor. With serial block-face scanning electron microscopy, a tissue volume from the inner-outer segment junction to basal RPE was captured. Surface membranes and complete internal ultrastructure of an individual RPE cell were achieved with a combination of manual and automated segmentation methods. Results: In one RPE cell, apical processes constitute 69% of the total cell surface area, through a dense network of over 3000 terminal branches. Single processes contact several photoreceptors. Basolateral infoldings facing the choriocapillaris resemble elongated filopodia and comprise 22% of the cell surface area. Membranous tubules and sacs of endoplasmic reticulum represent 20% of the cell body volume. A dense basal layer of mitochondria extends apically to partly overlap electron-dense pigment granules. Pores in the nuclear envelope form a distinct pattern of rows aligned with chromatin. Conclusions: Specialized membranes at the apical and basal side of the RPE cell body involved in intercellular uptake and transport represent over 90% of the total surface area. Together with the polarized distribution of organelles within the cell body, these findings are relevant for retinal clinical imaging, therapeutic approaches, and disease pathomechanisms.


Asunto(s)
Retina , Epitelio Pigmentado de la Retina , Humanos , Adulto Joven , Células Epiteliales , Orgánulos , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/metabolismo , Masculino
20.
bioRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38105975

RESUMEN

Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or to age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (apoB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic deletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor -associated cholesterol deposits and photoreceptor cell death, and loss of rod but not cone function. RPE-specific ablation of Mttp had no significant effect on plasma lipids and lipoproteins. While, apoB was decreased in the RPE, ocular retinoid concentrations remained unchanged. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but not directly involved in ocular retinoid and plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA