Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cancer Res ; 81(4): 820-833, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33355184

RESUMEN

Switch/sucrose-nonfermentable (SWI/SNF) chromatin-remodeling complexes are critical regulators of chromatin dynamics during transcription, DNA replication, and DNA repair. A recently identified SWI/SNF subcomplex termed GLTSCR1/1L-BAF (GBAF; or "noncanonical BAF", ncBAF) uniquely contains bromodomain-containing protein BRD9 and glioma tumor suppressor candidate region 1 (GLTSCR1) or its paralog GLTSCR1-like (GLTSCR1L). Recent studies have identified a unique dependency on GBAF (ncBAF) complexes in synovial sarcoma and malignant rhabdoid tumors, both of which possess aberrations in canonical BAF (cBAF) and Polybromo-BAF (PBAF) complexes. Dependencies on GBAF in malignancies without SWI/SNF aberrations, however, are less defined. Here, we show that GBAF, particularly its BRD9 subunit, is required for the viability of prostate cancer cell lines in vitro and for optimal xenograft tumor growth in vivo. BRD9 interacts with androgen receptor (AR) and CCCTC-binding factor (CTCF), and modulates AR-dependent gene expression. The GBAF complex exhibits overlapping genome localization and transcriptional targets as bromodomain and extraterminal domain-containing (BET) proteins, which are established AR coregulators. Our results demonstrate that GBAF is critical for coordinating SWI/SNF-BET cooperation and uncover a new druggable target for AR-positive prostate cancers, including those resistant to androgen deprivation or antiandrogen therapies. SIGNIFICANCE: Advanced prostate cancers resistant to androgen receptor antagonists are still susceptible to nontoxic BRD9 inhibitors, making them a promising alternative for halting AR signaling in progressed disease.


Asunto(s)
Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Factores de Transcripción/fisiología , Antagonistas de Receptores Androgénicos/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Masculino , Ratones , Ratones Desnudos , Células PC-3 , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , ARN Interferente Pequeño/farmacología , Receptores Androgénicos/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
ACS Appl Bio Mater ; 3(8): 4858-4872, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35021730

RESUMEN

Photodynamic therapy (PDT) has shown potential as a cancer treatment modality, but its clinical application is limited due to its visible-light activation since visible wavelengths of light cannot penetrate tissues well. Additionally, combination therapies utilizing PDT and radiotherapy have shown clinical promise in several cancers but are limited again by light penetration and the need for selective photosensitization of the treatment area. Herein, we report the development of bilirubin-photodynamic nanoparticles (PEGylated bilirubin-encapsulated CaWO4 nanoparticles or "PEG-BR/CWO NPs"). PEG-BR/CWO NPs are a formulation of PEGylated bilirubin micelles encapsulating CaWO4 nanoparticles. These particles are capable of activating PDT via X-ray irradiation within deep tissues due to the radioluminescence properties of their CaWO4 nanoparticle cores. PEG-BR/CWO NPs facilitate a combination of photodynamic and radiation therapy and represent a previously unexplored application of PEG-bilirubin conjugates as photosensitizing agents. When irradiated by X-rays, PEG-BR/CWO NPs emit UV-A and visible light from their CaWO4 cores, which excites bilirubin and leads to the production of singlet oxygen. PEG-BR/CWO NPs exhibit improvements over X-ray therapy alone in vitro and in murine xenograft models of head and neck cancer. The data presented in this study indicate that PEG-BR/CWO NPs are promising agents for facilitating combined radio-photodynamic therapy in deep tissue tumors.

4.
J Control Release ; 303: 237-252, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31026550

RESUMEN

The present work demonstrates a novel concept for intratumoral chemo-radio combination therapy for locally advanced solid tumors. For some locally advanced tumors, chemoradiation is currently standard of care. This combination treatment can cause acute and long term toxicity that can limit its use in older patients or those with multiple medical comorbidities. Intratumoral chemotherapy has the potential to address the problem of systemic toxicity that conventional chemotherapy suffers, and may, in our view, be a better strategy for treating certain locally advanced tumors. The present study proposes how intratumoral chemoradiation can be best implemented. The enabling concept is the use of a new chemotherapeutic formulation in which chemotherapy drugs (e.g., paclitaxel (PTX)) are co-encapsulated with radioluminecsnt nanoparticles (e.g., CaWO4 (CWO) nanoparticles (NPs)) within protective capsules formed by biocompatible/biodegradable polymers (e.g., poly(ethylene glycol)-poly(lactic acid) or PEG-PLA). This drug-loaded polymer-encapsulated radioluminescent nanoparticle system can be locally injected in solution form into the patient's tumor before the patient receives normal radiotherapy (e.g., 30-40 fractions of 2-3 Gy daily X-ray dose delivered over several weeks for locally advanced head and neck tumors). Under X-ray irradiation, the radioluminescent nanoparticles produce UV-A light that has a radio-sensitizing effect. These co-encapsulated radioluminescent nanoparticles also enable radiation-triggered release of chemo drugs from the polymer coating layer. The non-toxic nature (absence of dark toxicity) of this drug-loaded polymer-encapsulated radioluminescent nanoparticle ("PEG-PLA/CWO/PTX") formulation was confirmed by the MTT assay in cancer cell cultures. A clonogenic cell survival assay confirmed that these drug-loaded polymer-encapsulated radioluminescent nanoparticles significantly enhance the cancer cell killing effect of radiation therapy. In vivo study validated the efficacy of PEG-PLA/CWO/PTX-based intratumoral chemo-radio therapy in mouse tumor xenografts (in terms of tumor response and mouse survival). Results of a small-scale NP biodistribution (BD) study demonstrate that PEG-PLA/CWO/PTX NPs remained at the tumor sites for a long period of time (> 1 month) following direct intratumoral administration. A multi-compartmental pharmacokinetic model (with rate constants estimated from in vitro experiments) predicts that this radiation-controlled drug release technology enables significant improvements in the level and duration of drug availability within the tumor (throughout the typical length of radiation treatment, i.e., > 1 month) over conventional delivery systems (e.g., PEG-PLA micelles with no co-encapsulated CaWO4, or an organic liquid, e.g., a 50:50 mixture of Cremophor EL and ethanol, as in Taxol), while it is capable of maintaining the systemic level of the chemo drug far below the toxic threshold limit over the entire treatment period. This technology thus has the potential to offer a new therapeutic option that has not previously been available for patients excluded from conventional chemoradiation protocols.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Compuestos de Calcio/administración & dosificación , Sistemas de Liberación de Medicamentos , Sustancias Luminiscentes/administración & dosificación , Nanopartículas/administración & dosificación , Paclitaxel/administración & dosificación , Polietilenglicoles/administración & dosificación , Compuestos de Tungsteno/administración & dosificación , Animales , Antineoplásicos Fitogénicos/química , Compuestos de Calcio/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quimioradioterapia , Liberación de Fármacos , Femenino , Humanos , Sustancias Luminiscentes/química , Ratones , Nanopartículas/química , Neoplasias/terapia , Paclitaxel/química , Polietilenglicoles/química , Compuestos de Tungsteno/química
5.
ACS Biomater Sci Eng ; 5(9): 4776-4789, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-33448820

RESUMEN

Radiation therapy is a primary treatment modality for many forms of cancer. Normally, the highest tolerable dose of ionizing radiation is used to treat tumors, but limitations imposed by normal tissue complications present challenges for local tumor control. In light of this, a class of compounds called radio-sensitizers have been developed to enhance the effectiveness of radiation. Many of these are small molecule drugs found to interact favorably with radiation therapy, but recent advances have been made using nanoparticles as radio-sensitizers. Herein, we report the utilization of radio-luminescent calcium tungstate nanoparticles that emit photoelectrons, UV-A, and visible light during X-ray irradiation, acting as effective radio-sensitizers ("Radio Luminescence Therapy"). In addition, a folic acid-functionalized form of these nanoparticles was shown to enhance radio-sensitization in vitro and in murine models of head and neck cancer. Folic acid-functionalized particles were found to decrease UV-A-induced clonogenic cell survival relative to nonfunctionalized particles. Several possible mechanisms were explored, and the folic acid-functionalized particles were found to mediate this increase in efficacy likely by activating pro-proliferative signaling through folate's innate mitogenic activity, leading to decreased repair of UV-A-induced DNA lesions. Finally, a clinical case study of a canine sarcoma patient demonstrated the initial safety and feasibility of translating these folic acid-functionalized particles into the clinic as radio-sensitizers in the treatment of spontaneous tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...