Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Faraday Discuss ; 211(0): 61-77, 2018 10 26.
Article En | MEDLINE | ID: mdl-30073236

The goal of molecular crystal structure prediction (CSP) is to find all the plausible polymorphs for a given molecule. This requires performing global optimization over a high-dimensional search space. Genetic algorithms (GAs) perform global optimization by starting from an initial population of structures and generating new candidate structures by breeding the fittest structures in the population. Typically, the fitness function is based on relative lattice energies, such that structures with lower energies have a higher probability of being selected for mating. GAs may be adapted to perform multi-modal optimization by using evolutionary niching methods that support the formation of several stable subpopulations and suppress the over-sampling of densely populated regions. Evolutionary niching is implemented in the GAtor molecular crystal structure prediction code by using techniques from machine learning to dynamically cluster the population into niches of structural similarity. A cluster-based fitness function is constructed such that structures in less populated clusters have a higher probability of being selected for breeding. Here, the effects of evolutionary niching are investigated for the crystal structure prediction of 1,3-dibromo-2-chloro-5-fluorobenzene. Using the cluster-based fitness function increases the success rate of generating the experimental structure and additional low-energy structures with similar packing motifs.


Algorithms , Fluorobenzenes/chemistry , Computer Simulation , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Quantum Theory , Thermodynamics
2.
J Chem Phys ; 148(24): 241701, 2018 Jun 28.
Article En | MEDLINE | ID: mdl-29960303

We present Genarris, a Python package that performs configuration space screening for molecular crystals of rigid molecules by random sampling with physical constraints. For fast energy evaluations, Genarris employs a Harris approximation, whereby the total density of a molecular crystal is constructed via superposition of single molecule densities. Dispersion-inclusive density functional theory is then used for the Harris density without performing a self-consistency cycle. Genarris uses machine learning for clustering, based on a relative coordinate descriptor developed specifically for molecular crystals, which is shown to be robust in identifying packing motif similarity. In addition to random structure generation, Genarris offers three workflows based on different sequences of successive clustering and selection steps: the "Rigorous" workflow is an exhaustive exploration of the potential energy landscape, the "Energy" workflow produces a set of low energy structures, and the "Diverse" workflow produces a maximally diverse set of structures. The latter is recommended for generating initial populations for genetic algorithms. Here, the implementation of Genarris is reported and its application is demonstrated for three test cases.

3.
J Chem Theory Comput ; 14(4): 2246-2264, 2018 Apr 10.
Article En | MEDLINE | ID: mdl-29481740

We present the implementation of GAtor, a massively parallel, first-principles genetic algorithm (GA) for molecular crystal structure prediction. GAtor is written in Python and currently interfaces with the FHI-aims code to perform local optimizations and energy evaluations using dispersion-inclusive density functional theory (DFT). GAtor offers a variety of fitness evaluation, selection, crossover, and mutation schemes. Breeding operators designed specifically for molecular crystals provide a balance between exploration and exploitation. Evolutionary niching is implemented in GAtor by using machine learning to cluster the dynamically updated population by structural similarity and then employing a cluster-based fitness function. Evolutionary niching promotes uniform sampling of the potential energy surface by evolving several subpopulations, which helps overcome initial pool biases and selection biases (genetic drift). The various settings offered by GAtor increase the likelihood of locating numerous low-energy minima, including those located in disconnected, hard to reach regions of the potential energy landscape. The best structures generated are re-relaxed and re-ranked using a hierarchy of increasingly accurate DFT functionals and dispersion methods. GAtor is applied to a chemically diverse set of four past blind test targets, characterized by different types of intermolecular interactions. The experimentally observed structures and other low-energy structures are found for all four targets. In particular, for Target II, 5-cyano-3-hydroxythiophene, the top ranked putative crystal structure is a Z' = 2 structure with P1̅ symmetry and a scaffold packing motif, which has not been reported previously.

4.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 72(Pt 4): 439-59, 2016 08 01.
Article En | MEDLINE | ID: mdl-27484368

The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and `best practices' for performing CSP calculations. All of the targets, apart from a single potentially disordered Z' = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms.

5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 72(Pt 4): 562-70, 2016 08 01.
Article En | MEDLINE | ID: mdl-27484377

We present an analysis of putative structures of tricyano-1,4-dithiino[c]-isothiazole (TCS3), generated within the sixth crystal structure prediction blind test. Typical packing motifs are identified and characterized in terms of distinct patterns of close contacts and regions of electrostatic and dispersion interactions. We find that different dispersion-inclusive density functional theory (DFT) methods systematically favor specific packing motifs, which may affect the outcome of crystal structure prediction efforts. The effect of crystal packing on the electronic and optical properties of TCS3 is investigated using many-body perturbation theory within the GW approximation and the Bethe-Salpeter equation (BSE). We find that a structure with Pna21 symmetry and a bilayer packing motif exhibits intermolecular bonding patterns reminiscent of π-π stacking and has markedly different electronic and optical properties than the experimentally observed P21/n structure with a cyclic dimer motif, including a narrower band gap, enhanced band dispersion and broader optical absorption. The Pna21 bilayer structure is close in energy to the observed structure and may be feasible to grow.


Thermodynamics , Thiazoles/chemistry , Crystallization , Dimerization , Electrons , Models, Molecular , Nitriles/chemistry , Quantum Theory , Static Electricity
...