Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
BMC Ecol Evol ; 24(1): 1, 2024 01 02.
Article En | MEDLINE | ID: mdl-38163884

Habitat niches of fish species can exert a strong influence on population structure, even on a small geographical scale. In this scope, Pelasgus thesproticus is a great model species to study connectivity in riverine environments owing to its naturally patchy habitat distribution. Furthermore, it is important to conduct such studies in near-natural systems to avoid the impact of human disturbances on the river, such as fragmentation, morphological changes and habitat degradation. In this sense, the Vjosa in Albania is an excellent study area. A total of 204 individuals were sampled from five locations in the lower Vjosa and two tributaries and genotyped with 33 newly designed microsatellites loci using high throughput sequencing. The application of microsatellite genotyping by sequencing revealed genetic structure and some differentiation, even at a small spatial scale (< 65 river km). A total of 500 alleles were found with an average of 0.93 private alleles among sites with rather low FST values (< 0.04). The extent of admixture observed in some populations indicate that the genetic structure is mainly influenced by upstream populations, either from the main river itself or from tributaries. In addition, the connection between a tributary and the other sites is disrupted by the flow regime, which is reflected in a high degree of divergence from the other populations. Our results indicate that hydrological conditions of the flowing river present strong barriers to gene flow, particularly in the upstream direction, but at the same time act as dispersal corridors in the downstream direction and exhibit source-sink dynamics in which upstream populations contribute disproportionately to downstream populations for this habitat specialist along the river. It is suggested that processes of colonization and reinforcement may play an important role in shaping the genetic structure of patchily distributed fish species in natural river systems. Future studies should increase the knowledge of dispersal factors, habitat heterogeneity, consequence of source-sink dynamics, and gene flow within the system, which will help to understand and maintain important processes related to metapopulation theory and the potential evolutionary consequences of habitat loss and fragmentation.


Ecosystem , Fishes , Humans , Animals , Genotype , Fishes/genetics , Geography , Microsatellite Repeats/genetics
2.
BMC Ecol Evol ; 23(1): 73, 2023 12 08.
Article En | MEDLINE | ID: mdl-38062381

BACKGROUND: Osyris lanceolata (Hochst. & Steud.) (Santalaceae) is a multipurpose plant highly valued culturally and economically in Africa. However, O. lanceolata populations have rapidly dwindled in East Africa due to overexploitation and this is believed to cause further consequences on the species' genetic diversity and structure within the region. Information regarding a species' genetic diversity and structure is necessary for conservation but this is currently lacking for O. lanceolata in Uganda and Kenya. Lack of adequate scientific data hinders conservation efforts hence threatening the species survival and livelihoods. This study investigated patterns in genetic diversity and structure of O. lanceolata in Uganda and Kenya. Ten polymorphic microsatellite loci were used to genotype 210 individuals: 96 from Ugandan and 114 from Kenyan populations. RESULTS: All populations were highly polymorphic (80-100% polymorphism). A genetic differentiation was found between Kenyan and Ugandan populations. The highest genetic differentiation was among individuals and the least among populations. The Kenyan populations showed higher genetic diversity than Ugandan populations. The Ugandan populations showed more marker deviations from Hardy-Weinberg equilibrium and inbreeding coefficient. Two populations showed evidence of going through a recent bottleneck. There was significant genetic differentiation and structuring at higher K values into larger clusters and observed admixture between populations. The populations were significantly isolated by altitude as opposed to distance and climatic variables. Main barriers were associated with altitude differences. The data supports the idea of long-distance gene-flow between high altitude populations in both countries. CONCLUSION: The divergence in genetic structure suggests unrecognised taxonomic units within O. lanceolata which are characteristic to lower altitudes and higher altitudes including most Kenyan populations with divergent evolutionary patterns. Geographical barriers and environmental gradients could have influenced this genetic divergence, and such patterns may escalate the species microevolutionary processes into full allopatric speciation. Further investigations into the species' genetic admixture and emerging taxonomic units are necessary to guide conservation strategies in the region.


Genetic Variation , Santalaceae , Humans , Genetic Variation/genetics , Kenya , Uganda , Santalaceae/genetics , Microsatellite Repeats/genetics , Genetics, Population
3.
BMC Zool ; 8(1): 28, 2023 Nov 23.
Article En | MEDLINE | ID: mdl-37996889

BACKGROUND: Various anthropogenic activities continue to threaten the fish biodiversity of the East African water bodies such as the Victoria Nile. Although the Victoria Nile is a significant source of livelihood for human populations, the biology and ecology of Nile tilapia in this ecosystem remain understudied with little or no information on the morphology of the fish given varying and immense anthropogenic activities. Here, we use geometric morphometrics to examine the morphology/shape variations of Nile tilapia populations in Victoria Nile to gain insights into their current ecological state. RESULTS: Our results indicate unexpectedly smaller Nile tilapia body weights in Victoria Nile than in L. Victoria. Despite this, nearly all the populations displayed a relative condition factor (Kn) of greater ≥1 suggesting a healthy stock. However, two populations, LMF and VN_Bukeeka demonstrated Kn values of less than one (< 1). We also report that some Upper and Lower Victoria Nile populations display morphological similarities. Apart from L. Albert, Nile tilapia populations from Lakes Victoria and Kyoga are morphologically divergent from the riverine ones. We note that Nile tilapia from Nalubale Dam Reservoir is morphologically distinct from the close neighbouring Victoria Nile populations which are likely allied to the influence of the Nalubale Hydroelectric power dam as a barrier. CONCLUSION: Nile tilapia's morphological variation appears to be influenced by various anthropogenic disturbances notably, overfishing, hydroelectric power dams, and fish translocational history in Uganda. Management should enforce regulatory frameworks to avert human-mediated activities as these are likely to compromise the sustainability of the fisheries. Further studies are required to follow these populations with molecular genetics and environmental data to gain a deeper understanding of the fish species for informed sustainable management and conservation options.

4.
BMC Ecol Evol ; 22(1): 128, 2022 11 04.
Article En | MEDLINE | ID: mdl-36333666

BACKGROUND: As in most bryozoans, taxonomy and systematics of species in the genus Reteporella Busk, 1884 (family Phidoloporidae) has hitherto almost exclusively been based on morphological characters. From the central North Atlantic Azores Archipelago, nine Reteporella species have historically been reported, none of which have as yet been revised. Aiming to characterise the diversity and biogeographic distribution of Azorean Reteporella species, phylogenetic reconstructions were conducted on a dataset of 103 Azorean Reteporella specimens, based on the markers cytochrome C oxidase subunit 1, small and large ribosomal RNA subunits. Morphological identification was based on scanning electron microscopy and complemented the molecular inferences. RESULTS: Our results reveal two genetically distinct Azorean Reteporella clades, paraphyletic to eastern Atlantic and Mediterranean taxa. Moreover, an overall concordance between morphological and molecular species can be shown, and the actual bryozoan diversity in the Azores is greater than previously acknowledged as the dataset comprises three historically reported species and four putative new taxa, all of which are likely to be endemic. The inclusion of Mediterranean Reteporella specimens also revealed new species in the Adriatic and Ligurian Sea, whilst the inclusion of additional phidoloporid taxa hints at the non-monophyly of the genus Reteporella. CONCLUSION: Being the first detailed genetic study on the genus Reteporella, the high divergence levels inferred within the genus Reteporella and family Phidoloporidae calls for the need of further revision. Nevertheless, the overall concordance between morphospecies and COI data suggest the potential adequacy of a 3% cut-off to distinguish Reteporella species. The discovery of new species in the remote Azores Archipelago as well as in the well-studied Mediterranean Sea indicates a general underestimation of bryozoan diversity. This study constitutes yet another example of the importance of integrative taxonomical approaches on understudied taxa, contributing to cataloguing genetic and morphological diversity.


Anthozoa , Bryozoa , Animals , Bryozoa/genetics , Anthozoa/genetics , Phylogeny , Azores , Mediterranean Sea
5.
BMC Microbiol ; 22(1): 87, 2022 04 04.
Article En | MEDLINE | ID: mdl-35379180

BACKGROUND: Microorganisms inhabiting the gut play a significant role in supporting fundamental physiological processes of the host, which contributes to their survival in varied environments. Several studies have shown that altitude affects the composition and diversity of intestinal microbial communities in terrestrial animals. However, little is known about the impact of altitude on the gut microbiota of aquatic animals. The current study examined the variations in the gut microbiota of Nile tilapia (Oreochromis niloticus) from four lakes along an altitudinal gradient in Ethiopia by using 16S rDNA Illumina MiSeq high-throughput sequencing. RESULTS: The results indicated that low-altitude samples typically displayed greater alpha diversity. The results of principal coordinate analysis (PCoA) showed significant differences across samples from different lakes. Firmicutes was the most abundant phylum in the Lake Awassa and Lake Chamo samples whereas Fusobacteriota was the dominant phylum in samples from Lake Hashengie and Lake Tana. The ratio of Firmicutes to Bacteroidota in the high-altitude sample (Lake Hashengie, altitude 2440 m) was much higher than the ratio of Firmicutes to Bacteroidota in the low altitude population (Lake Chamo, altitude 1235 m). We found that the relative abundances of Actinobacteriota, Chloroflexi, Cyanobacteria, and Firmicutes were negatively correlated with altitude, while Fusobacteriota showed a positive association with altitude. Despite variability in the abundance of the gut microbiota across the lakes, some shared bacterial communities were detected. CONCLUSIONS: In summary, this study showed the indirect influence of altitude on gut microbiota. Altitude has the potential to modulate the gut microbiota composition and diversity of Nile tilapia. Future work will be needed to elucidate the functional significance of gut microbiota variations based on the geographical environment. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study determined the composition and diversity of the gut microbiota in Nile tilapia collected from lakes across an altitude gradient. Our findings greatly extend the baseline knowledge of fish gut microbiota in Ethiopian lakes that plays an important role in this species sustainable aquaculture activities and conservation.


Cichlids , Cyanobacteria , Gastrointestinal Microbiome , Animals , Cichlids/microbiology , Firmicutes , Lakes
6.
Plants (Basel) ; 10(9)2021 Aug 26.
Article En | MEDLINE | ID: mdl-34579313

The increasing demand for ornamental, cosmetic and pharmaceutical products is driving exploitation of plant species globally. Sub-Saharan Africa harbours unique and valuable plant resources and is now a target of plant resource depletion. African Sandalwood (Osyris lanceolata), a multi-purpose and drought-tolerant species, has seen increased exploitation for the last thirty years and is now declared endangered. Initiatives to conserve O. lanceolata are not yet successful in Africa due to poor understanding of the species. This review surveys relevant research on the ecology, taxonomy, population dynamics, genetic diversity and ethnobotany of O. lanceolata, and highlights gaps in the literature for further research. A scoping review of grey literature, scholarly papers and reports was applied with pre-determined criteria to screen relevant information. Review findings indicate O. lanceolata is a globally distributed species with no identified center of origin. In Africa, it ranges from Algeria to Ethiopia and south to South Africa; in Europe it occurs in the Iberian Peninsula and Balearic Islands; in Asia from India to China, and also on Socotra. The species has a confusing taxonomy, with unresolved issues in nomenclature, country range distribution, extensive synonymisation and variation in growth form (shrub or tree). The species population is reported to be declining in Africa, but information on population dynamics across its entire range of distribution is anecdotal. Additionally, ecological factors influencing spatial distribution and survival of the species remain unknown. A variety of uses are reported for O. lanceolata globally, including: cultural; medicinal and food; dye; perfumery; timber; ethnoveterinary and phytoremediation. Key research areas and implications for conservation of O. lanceolata in Sub-Saharan Africa are proposed.

7.
BMC Ecol Evol ; 21(1): 113, 2021 06 07.
Article En | MEDLINE | ID: mdl-34098870

BACKGROUND: Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) is among the economically most important freshwater fish species in East Africa, and a major source of protein for local consumption. Human induced translocations of non-native stocks for aquaculture and fisheries have been found as a potential threat to the genetic diversity and integrity of local populations. In the present study, we investigate the genetic structure of O. niloticus from 16 waterbodies across Ethiopia using 37 microsatellite loci with SSR-GBAS techniques. RESULTS: The samples are structured into three main clusters shaped either by biogeographic factors or stocking activities. High FST values (Global FST = 0.438) between populations indicate a high level of genetic differentiation and may suggest long term isolation even within the same drainage systems. Natural populations of the Omo-Turkana system and the lakes in the Southern Main Ethiopian Rift showed the highest genetic variability while low variability was found in stocked populations of lakes Hora, Hashenge and Hayq. CONCLUSIONS: The results presented herein, may provide an essential basis for the management and conservation of the unique genetic resources in northern East Africa, and advance our understanding of biodiversity, phylogeny, evolution and development towards phylogenetically more accurate taxonomic classifications.


Cichlids , Africa, Eastern , Africa, Northern , Animals , Cichlids/genetics , DNA , Ethiopia , Genetic Variation , Humans , Microsatellite Repeats/genetics
8.
Biology (Basel) ; 10(3)2021 Mar 01.
Article En | MEDLINE | ID: mdl-33804538

The gut microbiota of fishes is known to play an essential role in diverse aspects of host biology. The gut microbiota of fish is affected by various environmental parameters, including temperature changes, salinity and diet. Studies of effect of environment on gut microbiota enables to have a further understanding of what comprises a healthy microbiota under different environmental conditions. However, there is insufficient understanding regarding the effects of sampling season and catching site (wild and aquaculture) on the gut microbiota of Nile tilapia. This study characterised gut microbial composition and diversity from samples collected from Lake Tana and the Bahir Dar aquaculture facility centre using 16S rDNA Illumina MiSeq platform sequencing. Firmicutes and Fusobacteria were the most dominant phyla in the Lake Tana samples, while Proteobacteria was the most dominant in the aquaculture samples. The results of differential abundance testing clearly indicated significant differences for Firmicutes, Fusobacteria, Bacteroidetes and Cyanobacteria across sampling months. However, Proteobacteria, Chloroflexi, Fusobacteria and Cyanobacteria were significantly enriched in the comparison of samples from the Lake Tana and aquaculture centre. Significant differences were observed in microbial diversity across sampling months and between wild and captive Nile tilapia. The alpha diversity clearly showed that samples from the aquaculture centre (captive) had a higher diversity than the wild Nile tilapia samples from Lake Tana. The core gut microbiota of all samples of Nile tilapia used in our study comprised Firmicutes, Proteobacteria and Fusobacteria. This study clearly showed the impact of sampling season and catching site (wild and aquaculture) on the diversity and composition of bacterial communities associated with the gut of Nile tilapia. Overall, this is the first study on the effects of sampling season and catching site on the gut microbiota of Nile tilapia in Ethiopia. Future work is recommended to precisely explain the causes of these changes using large representative samples of Nile tilapia from different lakes and aquaculture farms.

9.
PLoS One ; 16(4): e0249593, 2021.
Article En | MEDLINE | ID: mdl-33857176

Visual characteristics are among the most important features for characterizing the phenotype of biological organisms. Color and geometric properties define population phenotype and allow assessing diversity and adaptation to environmental conditions. To analyze geometric properties classical morphometrics relies on biologically relevant landmarks which are manually assigned to digital images. Assigning landmarks is tedious and error prone. Predefined landmarks may in addition miss out on information which is not obvious to the human eye. The machine learning (ML) community has recently proposed new data analysis methods which by uncovering subtle features in images obtain excellent predictive accuracy. Scientific credibility demands however that results are interpretable and hence to mitigate the black-box nature of ML methods. To overcome the black-box nature of ML we apply complementary methods and investigate internal representations with saliency maps to reliably identify location specific characteristics in images of Nile tilapia populations. Analyzing fish images which were sampled from six Ethiopian lakes reveals that deep learning improves on a conventional morphometric analysis in predictive performance. A critical assessment of established saliency maps with a novel significance test reveals however that the improvement is aided by artifacts which have no biological interpretation. More interpretable results are obtained by a Bayesian approach which allows us to identify genuine Nile tilapia body features which differ in dependence of the animals habitat. We find that automatically inferred Nile tilapia body features corroborate and expand the results of a landmark based analysis that the anterior dorsum, the fish belly, the posterior dorsal region and the caudal fin show signs of adaptation to the fish habitat. We may thus conclude that Nile tilapia show habitat specific morphotypes and that a ML analysis allows inferring novel biological knowledge in a reproducible manner.


Cichlids/anatomy & histology , Image Processing, Computer-Assisted/methods , Animals , Bayes Theorem , Ecosystem , Machine Learning , Models, Anatomic , Phenotype
10.
BMC Ecol Evol ; 21(1): 17, 2021 02 05.
Article En | MEDLINE | ID: mdl-33546597

BACKGROUND: Invasive species are increasingly driving biodiversity decline, and knowledge of colonization dynamics, including both drivers and dispersal modes, are important to prevent future invasions. The bee species Megachile sculpturalis (Hymenoptera: Megachilidae), native to East-Asia, was first recognized in Southeast-France in 2008, and has since spread throughout much of Europe. The spread is very fast, and colonization may result from multiple fronts. RESULT: To track the history of this invasion, codominant markers were genotyped using Illumina sequencing and the invasion history and degree of connectivity between populations across the European invasion axis were investigated. Distinctive genetic clusters were detected with east-west differentiations in Middle-Europe. CONCLUSION: We hypothesize that the observed cluster formation resulted from multiple, independent introductions of the species to the European continent. This study draws a first picture of an early invasion stage of this wild bee and forms a foundation for further investigations, including studies of the species in their native Asian range and in the invaded range in North America.


Introduced Species , Animals , Bees , Europe , Asia, Eastern , France , North America
12.
Insects ; 11(10)2020 Oct 12.
Article En | MEDLINE | ID: mdl-33053741

Grape phylloxera is one of the most dangerous insect pests for worldwide viticulture. The leaf- and root-galling phylloxerid has been managed by grafting European grapevines onto American rootstock hybrids. Recent reports pinpoint the appearance of host-adapted biotypes, but information about the biomolecular characteristics underlying grape phylloxera biotypisation and its role in host performance is scarce. Using RNA-sequencing, we sequenced the transcriptome of two larval stages: L1 (probing) and L2-3 (feeding) larvae of two root-feeding grape phylloxera lineages feeding on the rootstock Teleki 5C (biotype C) and V. vinifera Riesling (biotype A). In total, 7501 differentially expressed genes (DEGs) were commonly modulated by the two biotypes. For the probing larvae, we found an increased number of DEGs functionally associated with insect chemoreception traits, such as odorant-binding proteins, chemosensory proteins, ionotropic, odorant, and gustatory receptors. The transcriptomic profile of feeding larvae was enriched with DEGs associated with the primary metabolism. Larvae feeding on the tolerant rootstock Teleki 5C exhibited higher numbers of plant defense suppression-associated DEGs than larvae feeding on the susceptible host. Based on the identified DEGs, we discuss their potential role for the compatible grape phylloxera-Vitis interaction belowground. This study was the first to compare the transcriptomes of two grape phylloxera lineages feeding on a tolerant and susceptible host, respectively, and to identify DEGs involved in the molecular interaction with these hosts. Our data provide a source for future studies on host adaptation mechanisms of grape phylloxera and help to elucidate grape phylloxera resistance further.

13.
Animals (Basel) ; 10(9)2020 Aug 20.
Article En | MEDLINE | ID: mdl-32825208

Hedgehogs are among the most abundant species to be found within wildlife shelters and after successful rehabilitation they are frequently translocated. The effects and potential impact of these translocations on gene flow within wild populations are largely unknown. In this study, different wild hedgehog populations were compared with artificially created "shelter populations", with regard to their genetic diversity, in order to establish basic data for future inferences on the genetic impact of hedgehog translocations. Observed populations are located within central Europe, including the species Erinaceus europaeus and E. roumanicus. Shelters were mainly hosting one species; in one case, both species were present syntopically. Apart from one exception, the results did not show a higher genetic diversity within shelter populations, indicating that individuals did not originate from a wider geographical area than individuals grouped into one of the wild populations. Two shelters from Innsbruck hosted individuals that belonged to two potential clusters, as indicated in a distance analysis. When such a structure stems from the effects of landscape elements like large rivers, the shelter management-related translocations might lead to homogenization across the dispersal barrier.

14.
Microorganisms ; 8(7)2020 Jul 13.
Article En | MEDLINE | ID: mdl-32668725

The Nile tilapia (Oreochromis niloticus) gut harbors a diverse microbial community; however, their variation across gut regions, lumen and mucosa is not fully elucidated. In this study, gut microbiota of all samples across gut regions and sample types (luminal content and mucosa) were analyzed and compared from two Ethiopian lakes. Microbiota were characterized using 16S rRNA Illumina MiSeq platform sequencing. A total of 2061 operational taxonomic units (OTUs) were obtained and the results indicated that Nile tilapia from Lake Chamo harbored a much more diversified gut microbiota than Lake Awassa. In addition, the gut microbiota diversity varied significantly across the gut region based on the Chao1, Shannon and Simpson index. The microbiome analyses of all samples in the midgut region showed significantly higher values for alpha diversity (Chao 1, Shannon and Simpson). Beta diversity analysis revealed a clear separation of samples according to sampling areas and gut regions. The most abundant genera were Clostridium_sensu_stricto and Clostridium_XI genera across all samples. Between the two sampling lakes, two phyla, Phylum Fusobacteria and Cyanobacteria, were found to be significantly different. On the other hand, six phyla (Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria and Cyanobacteria) were significantly different across gut regions. In this study, we found that all samples shared a large core microbiota, comprising a relatively large number of OTUs, which was dominated by Proteobacteria, Firmicutes, Cyanobacteria, Fusobacteria and Actinobacteria. This study has established the bases for future large-scale investigations of gut microbiota of fishes in Ethiopian lakes.

15.
BMC Evol Biol ; 20(1): 16, 2020 01 30.
Article En | MEDLINE | ID: mdl-32000675

BACKGROUND: The need for enhancing the productivity of fisheries in Africa triggered the introduction of non-native fish, causing dramatic changes to local species. In East Africa, the extensive translocation of Nile tilapia (Oreochromis niloticus) is one of the major factors in this respect. Using 40 microsatellite loci with SSR-GBS techniques, we amplified a total of 664 individuals to investigate the genetic structure of O. niloticus from East Africa in comparison to Ethiopian and Burkina Faso populations. RESULTS: All three African regions were characterized by independent gene-pools, however, the Ethiopian population from Lake Tana was genetically more divergent (Fst = 2.1) than expected suggesting that it might be a different sub-species. In East Africa, the genetic structure was congruent with both geographical location and anthropogenic activities (Isolation By Distance for East Africa, R2 = 0.67 and Uganda, R2 = 0.24). O. niloticus from Lake Turkana (Kenya) was isolated, while in Uganda, despite populations being rather similar to each other, two main natural catchments were able to be defined. We show that these two groups contributed to the gene-pool of different non-native populations. Moreover, admixture and possible hybridization with other tilapiine species may have contributed to the genetic divergence found in some populations such as Lake Victoria. We detected other factors that might be affecting Nile tilapia genetic variation. For example, most of the populations have gone through a reduction in genetic diversity, which can be a consequence of bottleneck (G-W, < 0.5) caused by overfishing, genetic erosion due to fragmentation or founder effect resulting from stocking activities. CONCLUSIONS: The anthropogenic activities particularly in the East African O. niloticus translocations, promoted artificial admixture among Nile Tilapia populations. Translocations may also have triggered hybridization with the native congenerics, which needs to be further studied. These events may contribute to outbreeding depression and hence compromising the sustainability of the species in the region.


Cichlids/genetics , Fisheries , Genetic Variation , Genetics, Population , Animals , Gene Flow , Kenya , Lakes , Microsatellite Repeats/genetics , Uganda
16.
Ecol Evol ; 9(5): 2814-2832, 2019 Mar.
Article En | MEDLINE | ID: mdl-30891219

By applying second-generation sequencing technologies to microsatellite genotyping, sequence information is produced which can result in high-resolution population genetics analysis populations and increased replicability between runs and laboratories. In the present study, we establish an approach to study the genetic structure patterns of two European hedgehog species Erinaceaus europaeus and E. roumanicus. These species are usually associated with human settlements and are good models to study anthropogenic impacts on the genetic diversity of wild populations. The short sequence repeats genotyping by sequence (SSR-GBS) method presented uses amplicon sequences to determine genotypes for which allelic variants can be defined according to both length and single nucleotide polymorphisms (SNPs). To evaluate whether complete sequence information improved genetic structure definition, we compared this information with datasets based solely on length information. We identified a total of 42 markers which were successfully amplified in both species. Overall, genotyping based on complete sequence information resulted in a higher number of alleles, as well as greater genetic diversity and differentiation between species. Additionally, the structure patterns were slightly clearer with a division between both species and some potential hybrids. There was some degree of genetic structure within species, although only in E. roumanicus was this related to geographical distance. The statistically significant results obtained by SSR-GBS demonstrate that it is superior to electrophoresis-based methods for SSR genotyping. Moreover, the greater reproducibility and throughput with lower effort which can be obtained with SSR-GBS and the possibility to include degraded DNA into the analysis, allow for continued relevance of SSR markers during the genomic era.

17.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(3): 490-499, 2019 04.
Article En | MEDLINE | ID: mdl-30633607

DNA barcoding constitutes a supplemental genetically based characterization tool for the identification of species. Traditionally, the barcodes are generated with a length of 650 bp using standardized Sanger sequencing, but with the introduction of high-throughput sequencing (HTS) methods new opportunities for sequencing are available. To use HTS for barcode collection and identification, the amplification of shorter fragments is preferred. Reference DNA midi-barcodes of wild bees were produced using the Illumina MiSeq as well as the Sanger method. Although DNA midi-barcodes derived from Illumina were comparatively shorter (418 bp), their sequences were coherent to the morphological assignment of species. The Illumina barcodes proved to be effective and dealt better with some general limitations of DNA barcoding.


DNA Barcoding, Taxonomic/methods , DNA Barcoding, Taxonomic/standards , DNA/genetics , High-Throughput Nucleotide Sequencing/methods , Animals , Bees/genetics , Polymerase Chain Reaction , Reproducibility of Results
18.
Mol Phylogenet Evol ; 119: 160-169, 2018 02.
Article En | MEDLINE | ID: mdl-29162551

As found in other oceanic islands, the Canary Islands include a large number of single island endemic species, some of which form clades that are broadly distributed within the archipelago. The genus Micromeria (Lamiaceae), for instance, includes groups of morphologically similar but ecologically diverse species on each island, representing a great model to investigate niche shifts and adaptation within the Canary Archipelago. Previous attempts to reconstruct phylogenetic relationships within the genus did not lead to robust phylogenies, presumably due to introgression and/or incomplete lineage sorting. In this study, we use a newly developed RAD-sequencing method to improve phylogenetic resolution and to better understand relationships among the Canary Island endemic Micromeria. Overall, we obtained 3571 loci that were genotyped for a total of 46 individuals of Micromeria. Our data reconstructed a highly resolved phylogeny, and corroborated the latest species reclassification of the M. varia s.l. species complex, the taxonomically most complicated group within the genus. Furthermore, taxa occupying similar ecological conditions in different islands, were shown to be closely related. This is the case of taxa from the laurel forest from La Gomera and Gran Canaria, suggesting that the laurel forest likely worked as a filter, only allowing the establishment of colonizers already pre-adapted to these conditions. We also found introgression between these species so it is also possible that the genes that facilitated the adaptation to laurel forest were swapped between Gran Canaria and La Gomera. The observations obtained in this study also allowed us to explain the role of introgression in the origin of M. varia s.l. species complex.


Biological Evolution , Islands , Lamiaceae/genetics , Sequence Analysis, DNA/methods , Base Sequence , Ecosystem , Geography , Likelihood Functions , Phylogeny , Spain , Species Specificity
19.
Appl Plant Sci ; 5(5)2017 May.
Article En | MEDLINE | ID: mdl-28529837

PREMISE OF THE STUDY: Polymorphic microsatellite loci were developed and used to genotype individuals of Herbertia zebrina (Iridaceae) as a first step for assessment of intraspecific genetic diversity. METHODS AND RESULTS: Primer pairs for 47 markers were developed: 20 from a microsatellite-enriched library and 27 from a next-generation sequencing run using the Illumina MiSeq platform. Of those, 15 loci were considered successful, of which 12 were polymorphic and three were monomorphic. The primers were tested in 50 individuals from three populations of H. zebrina. Two to 14 alleles per locus were identified, and observed and expected heterozygosity were 0.00-0.95 and 0.18-0.89, respectively. Tests of cross-amplification to evaluate the applicability of these markers showed positive results in one congeneric species, H. darwinii, and in a phylogenetically closely related species, Calydorea crocoides. CONCLUSIONS: These microsatellite markers can be used for studies of genetic variation and genetic population structure, as well as to support conservation efforts.

20.
Am J Bot ; 104(4): 538-549, 2017 Apr.
Article En | MEDLINE | ID: mdl-28411209

PREMISE OF THE STUDY: Qat (Catha edulis, Celastraceae) is a woody plant species cultivated for its stimulant alkaloids. Qat is important to the economy and culture in large regions of Ethiopia, Kenya, and Yemen. Despite the importance of this species, the wild origins and dispersal of cultivars have only been described in often contradictory historical documents. We examined the wild origins, human-mediated dispersal, and genetic divergence of cultivated qat compared to wild qat. METHODS: We sampled 17 SSR markers and 1561 wild and cultivated individuals across the historical areas of qat cultivation. KEY RESULTS: On the basis of genetic structure inferred using Bayesian and nonparametric methods, two centers of origin in Kenya and one in Ethiopia were found for cultivated qat. The centers of origin in Ethiopia and northeast of Mt. Kenya are the primary sources of cultivated qat genotypes. Qat cultivated in Yemen is derived from Ethiopian genotypes rather than Yemeni wild populations. Cultivated qat with a wild Kenyan origin has not spread to Ethiopia or Yemen, whereas a small minority of qat cultivated in Kenya originated in Ethiopia. Hybrid genotypes with both Ethiopian and Kenyan parentage are present in northern Kenya. CONCLUSIONS: Ethiopian cultivars have diverged from their wild relatives, whereas Kenyan qat has diverged less. This pattern of divergence could be caused by the extinction of the wild-source qat populations in Ethiopia due to deforestation, undersampling, and/or artificial selection for agronomically important traits.


Catha/genetics , Bayes Theorem , Crop Production , DNA, Plant/genetics , DNA, Plant/isolation & purification , Ethiopia , Genetic Markers/genetics , Genotype , Kenya , Microsatellite Repeats/genetics , Phylogeography , Polymerase Chain Reaction , Yemen
...