Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 48(17): 4601-4604, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656565

RESUMEN

We demonstrate sensitive electric field measurements by coherent homodyne amplification of the electric field induced second harmonic generation (E-FISH) technique. In the process of E-FISH, an applied electric field breaks the centrosymmetry of an otherwise homogeneous medium, in turn promoting the generation of the second harmonic frequency of an incident field. Due to weak third-order hyperpolarizability and the requirement of an applied field to break the symmetry, the E-FISH technique has been mainly used to study high fields, also requiring a strong optical field and sensitive detection. Here we superimpose the E-FISH signal with an auxiliary beam, also termed a local oscillator (LO), at double the incident frequency. Coherent superposition of the LO and the E-FISH output (LOE-FISH) allows for a homodyne amplification of the otherwise weak nonlinear signal. We have demonstrated an increase of signal-to-noise by a factor of seven, which results in a measurement time reduction of a factor of 49. This technique, LOE-FISH, has a number of advantages: detection with intensified detectors is not required. Furthermore, instead of millijoule pulsed lasers, we can work with microjoule pulsed lasers, which allows measuring at repetition rates of megahertz and opens single shot and real-time capability. The LOE-FISH technique increases in sensitivity at lower electric field values. Our work is a demonstration of the principle. Already with our first results from the demonstration, one can see the high potential of LOE-FISH.

2.
Phys Rev Lett ; 127(27): 270504, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35061434

RESUMEN

Employing electro-optic sampling (EOS) with ultrashort probe pulses, recent experiments showed direct measurements of quantum vacuum fields and their correlations on subcycle timescales. Here, we propose a quantum-enhanced EOS where bright photon-number entangled twin beams are used to derive conditioned nonclassical probes. In the case of the quantum vacuum, this leads to a sixfold improvement in the signal-to-noise ratio over the classically probed EOS. In addition, engineering of the conditioning protocol yields a reliable way to extract higher-order moments of the quantum noise distribution and robust discrimination of the input quantum states, for instance, a vacuum and a few-photon cat state. These improvements open a viable route toward robust tomography of quantum fields in space-time, an equivalent of homodyne detection in energy-momentum space, and the possibility of precise experiments in real-space quantum electrodynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA