Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2810: 11-28, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38926270

RESUMEN

Membrane proteins are essential components of biological membranes with key roles in cellular processes such as nutrient transport, cell communication, signaling, or energy conversion. Due to their crucial functions, membrane proteins and their complexes are often targets for therapeutic interventions. Expression and purification of membrane proteins are often a bottleneck to yield sufficient material for structural studies and further downstream characterization. Taking advantage of the Expi293 expression system for the production of eukaryotic proteins, we present a very efficient and fast protocol for the co-expression of a membrane complex. Here, we use transient transfection to co-express the membrane transporter PHT1 with its adaptor protein TASL. To allow the simultaneous screening of different proteins, constructs, or interaction partners, we make use of the Twin-Strep magnetic system. The protocol can be applied for small-scale screening of any membrane protein alone or co-expressed with interacting partners followed by large-scale production and purification of a potential membrane protein complex.


Asunto(s)
Proteínas de la Membrana , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Transfección , Animales , Expresión Génica , Células HEK293
2.
Commun Biol ; 6(1): 1057, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853181

RESUMEN

Free-electron lasers (FEL) are revolutionizing X-ray-based structural biology methods. While protein crystallography is already routinely performed at FELs, Small Angle X-ray Scattering (SAXS) studies of biological macromolecules are not as prevalent. SAXS allows the study of the shape and overall structure of proteins and nucleic acids in solution, in a quasi-native environment. In solution, chemical and biophysical parameters that have an influence on the structure and dynamics of molecules can be varied and their effect on conformational changes can be monitored in time-resolved XFEL and SAXS experiments. We report here the collection of scattering form factors of proteins in solution using FEL X-rays. The form factors correspond to the scattering signal of the protein ensemble alone; the scattering contributions from the solvent and the instrument are separately measured and accurately subtracted. The experiment was done using a liquid jet for sample delivery. These results pave the way for time-resolved studies and measurements from dilute samples, capitalizing on the intense and short FEL X-ray pulses.


Asunto(s)
Electrones , Proteínas , Dispersión del Ángulo Pequeño , Rayos X , Difracción de Rayos X , Proteínas/química , Rayos Láser
3.
Nat Commun ; 14(1): 5696, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709742

RESUMEN

PHT1 is a histidine /oligopeptide transporter with an essential role in Toll-like receptor innate immune responses. It can act as a receptor by recruiting the adaptor protein TASL which leads to type I interferon production via IRF5. Persistent stimulation of this signalling pathway is known to be involved in the pathogenesis of systemic lupus erythematosus (SLE). Understanding how PHT1 recruits TASL at the molecular level, is therefore clinically important for the development of therapeutics against SLE and other autoimmune diseases. Here we present the Cryo-EM structure of PHT1 stabilized in the outward-open conformation. By combining biochemical and structural modeling techniques we propose a model of the PHT1-TASL complex, in which the first 16 N-terminal TASL residues fold into a helical structure that bind in the central cavity of the inward-open conformation of PHT1. This work provides critical insights into the molecular basis of PHT1/TASL mediated type I interferon production.


Asunto(s)
Enfermedades Autoinmunes , Interferón Tipo I , Lupus Eritematoso Sistémico , Humanos , Histidina , Proteínas Adaptadoras Transductoras de Señales
4.
Nucleic Acids Res ; 49(22): 12895-12911, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34850113

RESUMEN

Mixed lineage leukemia 1 (MLL1) is a histone methyltransferase. Kaposi's sarcoma-associated herpesvirus (KSHV) is a leading cause of malignancy in AIDS. KSHV latently infects tumor cells and its genome is decorated with epigenetic marks. Here, we show that KSHV latency-associated nuclear antigen (LANA) recruits MLL1 to viral DNA where it establishes H3K4me3 modifications at the extensive KSHV terminal repeat elements during primary infection. LANA interacts with MLL1 complex members, including WDR5, integrates into the MLL1 complex, and regulates MLL1 activity. We describe the 1.5-Å crystal structure of N-terminal LANA peptide complexed with MLL1 complex member WDR5, which reveals a potential regulatory mechanism. Disruption of MLL1 expression rendered KSHV latency establishment highly deficient. This deficiency was rescued by MLL1 but not by catalytically inactive MLL1. Therefore, MLL1 is LANA regulable and exerts a central role in virus infection. These results suggest broad potential for MLL1 regulation, including by non-host factors.


Asunto(s)
Antígenos Virales/genética , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Nucleares/genética , Sarcoma de Kaposi/genética , Latencia del Virus/genética , Antígenos Virales/química , Antígenos Virales/metabolismo , Línea Celular Tumoral , Cristalografía por Rayos X , ADN Viral/genética , ADN Viral/metabolismo , Técnicas de Silenciamiento del Gen , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/fisiología , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , Sarcoma de Kaposi/virología
5.
J Biol Chem ; 297(4): 101175, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34499924

RESUMEN

The spike protein is the main protein component of the SARS-CoV-2 virion surface. The spike receptor-binding motif mediates recognition of the human angiotensin-converting enzyme 2 receptor, a critical step in infection, and is the preferential target for spike-neutralizing antibodies. Posttranslational modifications of the spike receptor-binding motif have been shown to modulate viral infectivity and host immune response, but these modifications are still being explored. Here we studied asparagine deamidation of the spike protein, a spontaneous event that leads to the appearance of aspartic and isoaspartic residues, which affect both the protein backbone and its charge. We used computational prediction and biochemical experiments to identify five deamidation hotspots in the SARS-CoV-2 spike protein. Asparagine residues 481 and 501 in the receptor-binding motif deamidate with a half-life of 16.5 and 123 days at 37 °C, respectively. Deamidation is significantly slowed at 4 °C, indicating a strong dependence of spike protein molecular aging on environmental conditions. Deamidation of the spike receptor-binding motif decreases the equilibrium constant for binding to the human angiotensin-converting enzyme 2 receptor more than 3.5-fold, yet its high conservation pattern suggests some positive effect on viral fitness. We propose a model for deamidation of the full SARS-CoV-2 virion illustrating how deamidation of the spike receptor-binding motif could lead to the accumulation on the virion surface of a nonnegligible chemically diverse spike population in a timescale of days. Our findings provide a potential mechanism for molecular aging of the spike protein with significant consequences for understanding virus infectivity and vaccine development.


Asunto(s)
SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencias de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/patología , COVID-19/virología , Humanos , Concentración de Iones de Hidrógeno , Interferometría , Cinética , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química
6.
Nat Commun ; 11(1): 5588, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149112

RESUMEN

The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Therapeutic neutralizing antibodies constitute a key short-to-medium term approach to tackle COVID-19. However, traditional antibody production is hampered by long development times and costly production. Here, we report the rapid isolation and characterization of nanobodies from a synthetic library, known as sybodies (Sb), that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Several binders with low nanomolar affinities and efficient neutralization activity were identified of which Sb23 displayed high affinity and neutralized pseudovirus with an IC50 of 0.6 µg/ml. A cryo-EM structure of the spike bound to Sb23 showed that Sb23 binds competitively in the ACE2 binding site. Furthermore, the cryo-EM reconstruction revealed an unusual conformation of the spike where two RBDs are in the 'up' ACE2-binding conformation. The combined approach represents an alternative, fast workflow to select binders with neutralizing activity against newly emerging viruses.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/prevención & control , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19 , Microscopía por Crioelectrón , Humanos , Pruebas de Neutralización , Unión Proteica , Conformación Proteica , Dominios Proteicos/inmunología , Receptores Virales/metabolismo , SARS-CoV-2
7.
Nat Commun ; 10(1): 407, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679446

RESUMEN

Plants are dependent on controlled sugar uptake for correct organ development and sugar storage, and apoplastic sugar depletion is a defense strategy against microbial infections like rust and mildew. Uptake of glucose and other monosaccharides is mediated by Sugar Transport Proteins, proton-coupled symporters from the Monosaccharide Transporter (MST) superfamily. We present the 2.4 Å structure of Arabidopsis thaliana high affinity sugar transport protein, STP10, with glucose bound. The structure explains high affinity sugar recognition and suggests a proton donor/acceptor pair that links sugar transport to proton translocation. It contains a Lid domain, conserved in all STPs, that locks the mobile transmembrane domains through a disulfide bridge, and creates a protected environment which allows efficient coupling of the proton gradient to drive sugar uptake. The STP10 structure illuminates fundamental principles of sugar transport in the MST superfamily with implications for both plant antimicrobial defense, organ development and sugar storage.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Monosacáridos/metabolismo , Azúcares/metabolismo , Simportadores/metabolismo , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiología , Glucosa/metabolismo , Transporte Iónico/fisiología , Modelos Moleculares , Proteínas de Transporte de Monosacáridos/genética , Conformación Proteica , Simportadores/genética , Xenopus
8.
Nucleic Acids Res ; 43(20): 10039-54, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26424851

RESUMEN

Latency-associated nuclear antigen (LANA) is central to episomal tethering, replication and transcriptional regulation of γ2-herpesviruses. LANA binds cooperatively to the terminal repeat (TR) region of the viral episome via adjacent LANA binding sites (LBS), but the molecular mechanism by which LANA assembles on the TR remains elusive. We show that KSHV LANA and MHV-68 LANA proteins bind LBS DNA using strikingly different modes. Solution structure of LANA complexes revealed that while kLANA tetramer is intrinsically bent both in the free and bound state to LBS1-2 DNA, mLANA oligomers instead adopt a rigid linear conformation. In addition, we report a novel non-ring kLANA structure that displays more flexibility at its assembly interface than previously demonstrated. We identified a hydrophobic pivot point located at the dimer-dimer assembly interface, which gives rotational freedom for kLANA to adopt variable conformations to accommodate both LBS1-2 and LBS2-1-3 DNA. Alterations in the arrangement of LBS within TR or at the tetramer assembly interface have a drastic effect on the ability of kLANA binding. We also show kLANA and mLANA DNA binding functions can be reciprocated. Although KSHV and MHV-68 are closely related, the findings provide new insights into how the structure, oligomerization, and DNA binding of LANA have evolved differently to assemble on the TR DNA.


Asunto(s)
Antígenos Virales/química , ADN Viral/química , Herpesvirus Humano 8 , Proteínas Nucleares/química , Rhadinovirus , Antígenos Virales/genética , Antígenos Virales/metabolismo , Sitios de Unión , ADN Viral/metabolismo , Modelos Moleculares , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Secuencias Repetidas Terminales , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...