Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(9): 4658-4671, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32313951

RESUMEN

Erythropoietic protoporphyria (EPP) is a rare genetic disease in which patients experience acute phototoxic reactions after sunlight exposure. It is caused by a deficiency in ferrochelatase (FECH) in the heme biosynthesis pathway. Most patients exhibit a loss-of-function mutation in trans to an allele bearing a SNP that favors aberrant splicing of transcripts. One viable strategy for EPP is to deploy splice-switching oligonucleotides (SSOs) to increase FECH synthesis, whereby an increase of a few percent would provide therapeutic benefit. However, successful application of SSOs in bone marrow cells is not described. Here, we show that SSOs comprising methoxyethyl-chemistry increase FECH levels in cells. We conjugated one SSO to three prototypical targeting groups and administered them to a mouse model of EPP in order to study their biodistribution, their metabolic stability and their FECH splice-switching ability. The SSOs exhibited distinct distribution profiles, with increased accumulation in liver, kidney, bone marrow and lung. However, they also underwent substantial metabolism, mainly at their linker groups. An SSO bearing a cholesteryl group increased levels of correctly spliced FECH transcript by 80% in the bone marrow. The results provide a promising approach to treat EPP and other disorders originating from splicing dysregulation in the bone marrow.


Asunto(s)
Ferroquelatasa/genética , Oligonucleótidos/administración & dosificación , Protoporfiria Eritropoyética/metabolismo , Empalme del ARN , Albúminas/metabolismo , Animales , Médula Ósea/metabolismo , Células COS , Chlorocebus aethiops , Modelos Animales de Enfermedad , Ferroquelatasa/metabolismo , Humanos , Células K562 , Ratones , Oligonucleótidos/sangre , Oligonucleótidos/química , Oligonucleótidos/farmacocinética , Polimorfismo de Nucleótido Simple , Protoporfiria Eritropoyética/genética , Protoporfiria Eritropoyética/terapia , Sitios de Empalme de ARN , Distribución Tisular
2.
Oxid Med Cell Longev ; 2017: 2487297, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28814986

RESUMEN

In childhood acute lymphoblastic leukemia, treatment failure is associated with resistance to glucocorticoid agents. Resistance to this class of drugs represents one of the strongest indicators of poor clinical outcome. We show that leukemic cells, which are resistant to the glucocorticoid drug methylprednisolone, display a higher demand of glucose associated with a deregulation of metabolic pathways, in comparison to sensitive cells. Interestingly, a combinatorial treatment of glucocorticoid and the glucose analog 2-deoxy-D-glucose displayed a synergistic effect in methylprednisolone-resistant cells, in an oxygen tension-independent manner. Unlike solid tumors, where 2-deoxy-D-glucose promotes inhibition of glycolysis by hexokinase II exclusively under hypoxic conditions, we were able to show that the antileukemic effects of 2-deoxy-D-glucose are far more complex in leukemia. We demonstrate a hexokinase II-independent cell viability decrease and apoptosis induction of the glucose analog in leukemia. Additionally, due to the structural similarity of 2-deoxy-D-glucose with mannose, we could confirm that the mechanism by which 2-deoxy-D-glucose predominantly acts in leukemia is via modification in N-linked glycosylation, leading to endoplasmic reticulum stress and consequently induction of the unfolded protein response.


Asunto(s)
Apoptosis/efectos de los fármacos , Desoxiglucosa/toxicidad , Oxígeno/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Glucólisis/efectos de los fármacos , Glicosilación/efectos de los fármacos , Hexoquinasa/antagonistas & inhibidores , Hexoquinasa/genética , Hexoquinasa/metabolismo , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Metilprednisolona/farmacología , Nitrógeno/química , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Inhibidores de Proteínas Quinasas/toxicidad , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
3.
PLoS One ; 10(4): e0123958, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25915540

RESUMEN

Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.


Asunto(s)
Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Meduloblastoma/metabolismo , MicroARNs/genética , Receptores OSM-LIF/metabolismo , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Meduloblastoma/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores OSM-LIF/genética
4.
Oncotarget ; 6(1): 116-29, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25402633

RESUMEN

Medulloblastoma (MB) is the most common malignant brain tumor in children and is associated with a poor outcome. cMYC amplification characterizes a subgroup of MB with very poor prognosis. However, there exist so far no targeted therapies for the subgroup of MB with cMYC amplification. Here we used kinome-wide RNA interference screening to identify novel kinases that may be targeted to inhibit the proliferation of c-Myc-overexpressing MB. The RNAi screen identified a set of 5 genes that could be targeted to selectively impair the proliferation of c-Myc-overexpressing MB cell lines: AKAP12 (A-kinase anchor protein), CSNK1α1 (casein kinase 1, alpha 1), EPHA7 (EPH receptor A7) and PCTK1 (PCTAIRE protein kinase 1). When using RNAi and a pharmacological inhibitor selective for PCTK1, we could show that this kinase plays a crucial role in the proliferation of MB cell lines and the activation of the mammalian target of rapamycin (mTOR) pathway. In addition, pharmacological PCTK1 inhibition reduced the expression levels of c-Myc. Finally, targeting PCTK1 selectively impaired the tumor growth of c-Myc-overexpressing MB cells in vivo. Together our data uncover a novel and crucial role for PCTK1 in the proliferation and survival of MB characterized by cMYC amplification.


Asunto(s)
Neoplasias Cerebelosas/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Regulación Neoplásica de la Expresión Génica , Meduloblastoma/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , Animales , Ciclo Celular , Proliferación Celular , Neoplasias Cerebelosas/genética , Embrión de Pollo , Membrana Corioalantoides/metabolismo , Humanos , Meduloblastoma/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño/metabolismo
5.
PLoS One ; 9(4): e94132, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24718026

RESUMEN

The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancer and plays a crucial role in glioblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K isoforms as a novel anti-tumor approach in glioblastoma. Consistent expression of the PI3K catalytic isoform PI3K p110α was detected in a panel of glioblastoma patient samples. In contrast, PI3K p110ß expression was only rarely detected in glioblastoma patient samples. The expression of a module comprising the epidermal growth factor receptor (EGFR)/PI3K p110α/phosphorylated ribosomal S6 protein (p-S6) was correlated with shorter patient survival. Inhibition of PI3K p110α activity impaired the anchorage-dependent growth of glioblastoma cells and induced tumor regression in vivo. Inhibition of PI3K p110α or PI3K p110ß also led to impaired anchorage-independent growth, a decreased migratory capacity of glioblastoma cells, and reduced the activation of the Akt/mTOR pathway. These effects were selective, because targeting of PI3K p110δ did not result in a comparable impairment of glioblastoma tumorigenic properties. Together, our data reveal that drugs targeting PI3K p110α can reduce growth in a subset of glioblastoma tumors characterized by the expression of EGFR/PI3K p110α/p-S6.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Proteínas de Neoplasias/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Animales , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/enzimología , Adhesión Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Fosfatidilinositol 3-Quinasa Clase Ia/fisiología , Ensayos de Selección de Medicamentos Antitumorales , Inducción Enzimática , Glioblastoma/enzimología , Humanos , Hidrazonas/farmacología , Morfolinas/farmacología , Proteínas Proto-Oncogénicas c-akt/fisiología , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato , Sulfonamidas/farmacología , Tiofenos/farmacología , Células Tumorales Cultivadas
6.
PLoS One ; 7(10): e47109, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056595

RESUMEN

The receptor tyrosine kinase (RTK)/phosphoinositide 3-kinase (PI3K) pathway is fundamental for cancer cell proliferation and is known to be frequently altered and activated in neoplasia, including embryonal tumors. Based on the high frequency of alterations, targeting components of the PI3K signaling pathway is considered to be a promising therapeutic approach for cancer treatment. Here, we have investigated the potential of targeting the axis of the insulin-like growth factor-1 receptor (IGF-1R) and PI3K signaling in two common cancers of childhood: neuroblastoma, the most common extracranial tumor in children and medulloblastoma, the most frequent malignant childhood brain tumor. By treating neuroblastoma and medulloblastoma cells with R1507, a specific humanized monoclonal antibody against the IGF-1R, we could observe cell line-specific responses and in some cases a strong decrease in cell proliferation. In contrast, targeting the PI3K p110α with the specific inhibitor PIK75 resulted in broad anti-proliferative effects in a panel of neuro- and medulloblastoma cell lines. Additionally, sensitization to commonly used chemotherapeutic agents occurred in neuroblastoma cells upon treatment with R1507 or PIK75. Furthermore, by studying the expression and phosphorylation state of IGF-1R/PI3K downstream signaling targets we found down-regulated signaling pathway activation. In addition, apoptosis occurred in embryonal tumor cells after treatment with PIK75 or R1507. Together, our studies demonstrate the potential of targeting the IGF-1R/PI3K signaling axis in embryonal tumors. Hopefully, this knowledge will contribute to the development of urgently required new targeted therapies for embryonal tumors.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Meduloblastoma/metabolismo , Neuroblastoma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/efectos de los fármacos , Anticuerpos Monoclonales Humanizados , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA