Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Rev Sci Instrum ; 93(7): 075110, 2022 Jul 01.
Article En | MEDLINE | ID: mdl-35922303

In this work, we present a new endstation for the AMOLine of the ASTRID2 synchrotron at Aarhus University, which combines a cluster and nanodroplet beam source with a velocity map imaging and time-of-flight spectrometer for coincidence imaging spectroscopy. Extreme-ultraviolet spectroscopy of free nanoparticles is a powerful tool for studying the photophysics and photochemistry of resonantly excited or ionized nanometer-sized condensed-phase systems. Here, we demonstrate this capability by performing photoelectron-photoion coincidence experiments with pure and doped superfluid helium nanodroplets. Different doping options and beam sources provide a versatile platform to generate various van der Waals clusters as well as He nanodroplets. We present a detailed characterization of the new setup and show examples of its use for measuring high-resolution yield spectra of charged particles, time-of-flight ion mass spectra, anion-cation coincidence spectra, multi-coincidence electron spectra, and angular distributions. A particular focus of the research with this new endstation is on intermolecular charge and energy-transfer processes in heterogeneous nanosystems induced by valence-shell excitation and ionization.

2.
Phys Rev Lett ; 125(16): 163201, 2020 Oct 16.
Article En | MEDLINE | ID: mdl-33124863

We report on a multiparticle coincidence experiment performed at the European X-ray Free-Electron Laser at the Small Quantum Systems instrument using a COLTRIMS reaction microscope. By measuring two ions and two electrons in coincidence, we investigate double core-hole generation in O_{2} molecules in the gas phase. Single-site and two-site double core holes have been identified and their molecular-frame electron angular distributions have been obtained for a breakup of the oxygen molecule into two doubly charged ions. The measured distributions are compared to results of calculations performed within the frozen- and relaxed-core Hartree-Fock approximations.

3.
Proc Natl Acad Sci U S A ; 113(51): 14651-14655, 2016 12 20.
Article En | MEDLINE | ID: mdl-27930299

Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this "tunneling region," the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2's binding energy of [Formula: see text] neV, which is in agreement with most recent calculations.

4.
Science ; 348(6234): 551-5, 2015 May 01.
Article En | MEDLINE | ID: mdl-25931554

Quantum theory dictates that upon weakening the two-body interaction in a three-body system, an infinite number of three-body bound states of a huge spatial extent emerge just before these three-body states become unbound. Three helium (He) atoms have been predicted to form a molecular system that manifests this peculiarity under natural conditions without artificial tuning of the attraction between particles by an external field. Here we report experimental observation of this long-predicted but experimentally elusive Efimov state of (4)He3 by means of Coulomb explosion imaging. We show spatial images of an Efimov state, confirming the predicted size and a typical structure where two atoms are close to each other while the third is far away.

5.
Rev Sci Instrum ; 83(10): 103905, 2012 Oct.
Article En | MEDLINE | ID: mdl-23126780

We present a new experimental setup to study electron-electron coincidences from superconducting surfaces. In our approach, electrons emitted from a surface are projected onto a time- and position-sensitive microchannel plate detector with delayline position readout. Electrons that are emitted within 2 π solid angle with respect to the surface are detected in coincidence. The detector used is a hexagonal delayline detector with enhanced multiple hit capabilities. It is read out with a Flash analog-to-digital converter. The three-dimensional momentum vector is obtained for each electron. The intrinsic dead time of the detector has been greatly reduced by implementing a new algorithm for pulse analysis. The sample holder has been matched to fit the spectrometer while being capable of cooling down the sample to 4.5 K during the measurement and heating it up to 420 K for the cleaning procedure.


Electrons , Spectrum Analysis/instrumentation , Electric Conductivity , Optical Imaging
6.
Proc Natl Acad Sci U S A ; 108(29): 11821-4, 2011 Jul 19.
Article En | MEDLINE | ID: mdl-21730184

Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion-atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He(+) ions on isolated Ne atoms and on Ne dimers (Ne(2)). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation.


Alpha Particles , Cell Survival/radiation effects , Electrons , Helium/chemistry , Neon/chemistry , Spectrum Analysis
7.
Opt Express ; 17(15): 12345-50, 2009 Jul 20.
Article En | MEDLINE | ID: mdl-19654636

We demonstrate warm target recoil ion momentum spectroscopy for the fragmentation dynamics of the warm hydrogen molecules at room temperature. The thermal movement effect of the warm molecule is removed by using a correction algorithm in the momentum space. Based on the reconstructed three-dimensional momentum vectors as well as the kinetic energy release spectra, different vibrational states of the H(2)(+) ground state are clearly visible and the internuclear separation for charge resonance enhanced ionization of the second electron is identified. The results show adequate accordance with the former experiments using other techniques.


Hydrogen/chemistry , Optics and Photonics/methods , Physics/methods , Algorithms , Kinetics , Lasers , Photons , Software , Spectrophotometry, Infrared/methods , Temperature
8.
Rev Sci Instrum ; 79(6): 063102, 2008 Jun.
Article En | MEDLINE | ID: mdl-18601392

We describe a momentum imaging setup for direct time-resolved studies of ionization-induced molecular dynamics. This system uses a tabletop ultrafast extreme-ultraviolet (EUV) light source based on high harmonic upconversion of a femtosecond laser. The high photon energy (around 42 eV) allows access to inner-valence states of a variety of small molecules via single photon excitation, while the sub--10-fs pulse duration makes it possible to follow the resulting dynamics in real time. To obtain a complete picture of molecular dynamics following EUV induced photofragmentation, we apply the versatile cold target recoil ion momentum spectroscopy reaction microscope technique, which makes use of coincident three-dimensional momentum imaging of fragments resulting from photoexcitation. This system is capable of pump-probe spectroscopy by using a combination of EUV and IR laser pulses with either beam as a pump or probe pulse. We report several experiments performed using this system.

...