Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Molecules ; 29(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731508

This study delves into the physicochemical properties of inorganic hydroxyapatite (HAp) and hybrid hydroxyapatite-chitosan (HAp-CTS) granules, also gold-enriched, which can be used as aggregates in biomicroconcrete-type materials. The impact of granules' surface modifications with citric acid (CA) or polyethylene glycol (PEG) was assessed. Citric acid modification induced increased specific surface area and porosity in inorganic granules, contrasting with reduced parameters in hybrid granules. PEG modification resulted in a slight increase in specific surface area for inorganic granules and a substantial rise for hybrid granules with gold nanoparticles. Varied effects on open porosity were observed based on granule type. Microstructural analysis revealed increased roughness for inorganic granules post CA modification, while hybrid granules exhibited smoother surfaces. Novel biomicroconcretes, based on α-tricalcium phosphate (α-TCP) calcium phosphate cement and developed granules as aggregates within, were evaluated for compressive strength. Compressive strength assessments showcased significant enhancement with PEG modification, emphasizing its positive impact. Citric acid modification demonstrated variable effects, depending on granule composition. The incorporation of gold nanoparticles further enriched the multifaceted approach to enhancing calcium phosphate-based biomaterials for potential biomedical applications. This study demonstrates the pivotal role of surface modifications in tailoring the physicochemical properties of granules, paving the way for advanced biomicroconcretes with improved compressive strength for diverse biomedical applications.


Citric Acid , Durapatite , Polyethylene Glycols , Citric Acid/chemistry , Durapatite/chemistry , Polyethylene Glycols/chemistry , Gold/chemistry , Biocompatible Materials/chemistry , Materials Testing , Chitosan/chemistry , Porosity , Metal Nanoparticles/chemistry , Chemical Phenomena , Compressive Strength , Surface Properties
2.
Cancers (Basel) ; 16(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38730672

The incidence of gastric cancer (GC) is expected to increase to 1.77 million cases by 2040. To improve treatment outcomes, GC patients are increasingly treated with neoadjuvant chemotherapy (NAC) prior to curative-intent resection. Although NAC enhances locoregional control and comprehensive patient care, survival rates remain poor, and further investigations should establish outcomes assessment of current clinical pathways. Individually assessed parameters have served as benchmarks for treatment quality in the past decades. The Outcome4Medicine Consensus Conference underscores the inadequacy of isolated metrics, leading to increased recognition and adoption of composite measures. One of the most simple and comprehensive is the "All or None" method, which refers to an approach where a specific set of criteria must be fulfilled for an individual to achieve the overall measure. This narrative review aims to present the rationale for the implementation of a novel composite measure, Textbook Neoadjuvant Outcome (TNO). TNO integrates five objective and well-established components: Treatment Toxicity, Laboratory Tests, Imaging, Time to Surgery, and Nutrition. It represents a desired, multidisciplinary care and hospitalization of GC patients undergoing NAC to identify the treatment- and patient-related data required to establish high-quality oncological care further. A key strength of this narrative review is the clinical feasibility and research background supporting the implementation of the first and novel composite measure representing the "ideal" and holistic care among patients with locally advanced esophago-gastric junction (EGJ) and GC in the preoperative period after NAC. Further analysis will correlate clinical outcomes with the prognostic factors evaluated within the TNO framework.

3.
RSC Adv ; 13(48): 34020-34031, 2023 Nov 16.
Article En | MEDLINE | ID: mdl-38020001

Biomaterials based on α-TCP are highly recommended for medical applications due to their ability to bond chemically with bone tissue. However, in order to improve their physicochemical properties, modifications are needed. In this work, novel, hybrid α-TCP-based bone cements were developed and examinated. The influence of two different silane coupling agents (SCAs) - tetraethoxysilane (TEOS) and 3-glycidoxypropyl trimethoxysilane (GPTMS) on the properties of the final materials was investigated. Application of modifiers allowed us to obtain hybrid materials due to the presence of different bonds in their structure, for example between calcium phosphates and SCA molecules. The use of SCAs increased the compressive strength of the bone cements from 7.24 ± 0.35 MPa to 12.17 ± 0.48 MPa. Moreover, modification impacted the final setting time of the cements, reducing it from 11.0 to 6.5 minutes. The developed materials displayed bioactive potential in simulated body fluid. Presented findings demonstrate the beneficial influence of silane coupling agents on the properties of calcium phosphate-based bone substitutes and pave the way for their further in vitro and in vivo studies.

4.
Int J Mol Sci ; 24(17)2023 Aug 30.
Article En | MEDLINE | ID: mdl-37686268

In this work, the influence of the liquid phase composition on the physicochemical properties of double hybrid-type bone substitutes was investigated. The solid phase of obtained biomicroconcretes was composed of highly reactive α-tricalcium phosphate powder (α-TCP) and hybrid hydroxyapatite/chitosan granules (HA/CTS). Various combinations of disodium phosphate (Na2HPO4) solution and citrus pectin gel were used as liquid phases. The novelty of this study is the development of double-hybrid materials with a dual setting system. The double hybrid phenomenon is due to the interactions between polycationic polymer (chitosan in hybrid granules) and polyanionic polymer (citrus pectin). The chemical and phase composition (FTIR, XRD), setting times (Gillmore needles), injectability, mechanical strength, microstructure (SEM) and chemical stability in vitro were studied. The setting times of obtained materials ranged from 4.5 to 30.5 min for initial and from 7.5 to 55.5 min for final setting times. The compressive strength varied from 5.75 to 13.24 MPa. By incorporating citrus pectin into the liquid phase of the materials, not only did it enhance their physicochemical properties, but it also resulted in the development of fully injectable materials featuring a dual setting system. It has been shown that the properties of materials can be controlled by using the appropriate ratio of citrus pectin in the liquid phase.


Bone Cements , Chitosan , Calcium Phosphates , Durapatite , Polymers
6.
Int J Mol Sci ; 23(19)2022 Sep 30.
Article En | MEDLINE | ID: mdl-36232889

The search for new materials for bone regenerative purposes is still ongoing. Therefore, we present a series of newly constructed composites based on ß tricalcium phosphate (ßTCP) and poly(3-hydroxybutyrate) bacteria-derived biopolymer (P(3HB)) in the form of 3D scaffolds with different pore sizes. To improve the polymer attachment to the ßTCP surface, the etching of ceramic sinters, using citric acid, was applied. As expected, pre-treatment led to the increase in surface roughness and the creation of micropores facilitating polymer adhesion. In this way, the durability and compressive strength of the ceramic-polymer scaffolds were enhanced. It was confirmed that P(3HB) degrades to 3-hydroxybutyric acid, which broadens applications of developed materials in bone tissue engineering as this compound can potentially nourish surrounding tissues and reduce osteoporosis. Moreover, to the best of our knowledge, it is one of the first studies where the impact of ßTCP/P(3HB) scaffolds on mesenchymal stem cells (MSCs), cultured in lowered (5%) oxygen concentration, was assessed. It was decided to use a 5% oxygen concentration in the culture to mimic the conditions that would be found in damaged bone in a living organism during regeneration. Scaffolds enabled cell migration and sufficient flow of the culture medium, ensuring high cell viability. Furthermore, in composites with etched ßTCP, the MSCs adhesion was facilitated by hydrophilic ceramic protrusions which reduced hydrophobicity. The developed materials are potential candidates for bone tissue regeneration. Nevertheless, to confirm this hypothesis, in vivo studies should be performed.


Calcium Phosphates , Tissue Engineering , 3-Hydroxybutyric Acid , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Citric Acid , Oxygen , Polymers , Tissue Scaffolds/chemistry
7.
Materials (Basel) ; 14(24)2021 Dec 07.
Article En | MEDLINE | ID: mdl-34947091

In this paper, novel hybrid biomicroconcrete-type composites were developed and investigated. The solid phase of materials consisted of a highly reactive α -tricalcium phosphate (α-TCP) powder, hybrid hydroxyapatite-chitosan (HAp-CTS) material in the form of powder and granules (as aggregates), and the polysaccharides sodium alginate (SA) or hydroxypropyl methylcellulose (HPMC). The liquid/gel phase in the studied materials constituted a citrus pectin gel. The influence of SA or HPMC on the setting reaction, microstructure, mechanical as well as biological properties of biomicroconcretes was investigated. Studies revealed that manufactured cement pastes were characterized by high plasticity and cohesion. The dual setting system of developed biomicroconcretes, achieved through α-TCP setting reaction and polymer crosslinking, resulted in a higher compressive strength. Material with the highest content of sodium alginate possessed the highest mechanical strength (~17 MPa), whereas the addition of hydroxypropyl methylcellulose led to a subtle compressive strength decrease. The obtained biomicroconcretes were chemically stable and characterized by a high bioactive potential. The novel biomaterials with favorable physicochemical and biological properties can be prosperous materials for filling bone tissue defects of any shape and size.

8.
Materials (Basel) ; 14(15)2021 Jul 28.
Article En | MEDLINE | ID: mdl-34361421

Implantations in orthopedics are associated with a high risk of bacterial infections in the surgery area. Therefore, biomaterials containing antibacterial agents, such as antibiotics, bactericidal ions or nanoparticles have been intensively investigated. In this work, silver decorated ß tricalcium phosphate (ßTCP)-based porous scaffolds were obtained and coated with a biopolymer-poly(3-hydroxybutyrate)-P(3HB). To the best of our knowledge, studies using silver-doped ßTCP and P(3HB), as a component in ceramic-polymer scaffolds for bone tissue regeneration, have not yet been reported. Obtained materials were investigated by high-temperature X-ray diffraction, X-ray fluorescence, scanning electron microscopy with energy dispersive spectroscopy, hydrostatic weighing, compression tests and ultrahigh-pressure liquid chromatography with mass spectrometry (UHPLC-MS) measurements. The influence of sintering temperature (1150, 1200 °C) on the scaffolds' physicochemical properties (phase and chemical composition, microstructure, porosity, compressive strength) was evaluated. Materials covered with P(3HB) possessed higher compressive strength (3.8 ± 0.6 MPa) and surgical maneuverability, sufficient to withstand the implantation procedures. Furthermore, during the hydrolytic degradation of the composite material not only pure (R)-3-hydroxybutyric acid but also its oligomers were released which may nourish surrounding tissues. Thus, obtained scaffolds were found to be promising bone substitutes for use in non-load bearing applications.

9.
Materials (Basel) ; 14(14)2021 Jul 09.
Article En | MEDLINE | ID: mdl-34300772

Bioactive, chemically bonded bone substitutes with antibacterial properties are highly recommended for medical applications. In this study, biomicroconcretes, composed of silicon modified (Si-αTCP) or non-modified α-tricalcium phosphate (αTCP), as well as hybrid hydroxyapatite/chitosan granules non-modified and modified with gold nanoparticles (AuNPs), were designed. The developed biomicroconcretes were supposed to combine the dual functions of antibacterial activity and bone defect repair. The chemical and phase composition, microstructure, setting times, mechanical strength, and in vitro bioactive potential of the composites were examined. Furthermore, on the basis of the American Association of Textile Chemists and Colorists test (AATCC 100), adapted for chemically bonded materials, the antibacterial activity of the biomicroconcretes against S. epidermidis, E. coli, and S. aureus was evaluated. All biomicroconcretes were surgically handy and revealed good adhesion between the hybrid granules and calcium phosphate-based matrix. Furthermore, they possessed acceptable setting times and mechanical properties. It has been stated that materials containing AuNPs set faster and possess a slightly higher compressive strength (3.4 ± 0.7 MPa). The modification of αTCP with silicon led to a favorable decrease of the final setting time to 10 min. Furthermore, it has been shown that materials modified with AuNPs and silicon possessed an enhanced bioactivity. The antibacterial properties of all of the developed biomicroconcretes against the tested bacterial strains due to the presence of both chitosan and Au were confirmed. The material modified simultaneously with AuNPs and silicon seems to be the most promising candidate for further biological studies.

10.
Acta Bioeng Biomech ; 22(1): 47-56, 2020.
Article En | MEDLINE | ID: mdl-32307448

PURPOSE: Recently, the attention has been drawn to complex systems - biomicroconcretes composed of a bone cement matrix and resorbable granules or microspheres. This paper presents novel bone substitutes composed of α-tricalcium phosphate (α-TCP; cement matrix), calcium sulphate dihydrate granules (GCSD; aggregates in biomicroconcrete) and various polymers (chitosan, sodium alginate, methylcellulose) used for the improvement of material properties. The aim of this work was to study α-TCP-GCSD-polymer interactions and to compare the impact of organic additives on the physicochemical properties of biomicroconcretes. METHODS: Scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), X-ray diffractometry (XRD) as well as universal testing machine (INSTRON), Gilmore apparatus and pH/ conduct-meter were used. RESULTS: The chemical bonding between α-TCP matrix and CSD granules resulted in a compressive strength appropriate for low-load bearing applications (7-12 MPa) and clinically relevant setting times (8-33 min). Biomicroconcretes consisting of sodium alginate possessed the highest mechanical strength (12 ± 2 MPa). It has also been found that the dissolution-precipitation reactions of the α-TCP were retarded with the addition of chitosan and acetic acid. This effect was not observed in the case of methylcellulose and sodium alginate. Chemical stability and bioactivity of materials were demonstrated during in vitro studies in simulated body fluid. CONCLUSIONS: Materials containing calcium sulphate-based granules were surgically handy, possessed promising physicochemical properties and are supposed to ensure desired macroporosity as well as gradual resorption in vivo. It has been demonstrated that the presence of CSD granules and polymers influenced the physicochemical properties of composites.


Alginates/chemistry , Calcium Phosphates/chemistry , Calcium Sulfate/chemistry , Chemical Phenomena , Chitosan/chemistry , Materials Testing , Methylcellulose/chemistry , Compressive Strength , Durapatite/chemistry , Electric Conductivity , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Porosity , Spectroscopy, Fourier Transform Infrared , Time Factors , X-Ray Diffraction
11.
J Biomed Mater Res A ; 108(5): 1243-1255, 2020 05.
Article En | MEDLINE | ID: mdl-32056372

The current studies provide insights into how predictions based on results of physicochemical and in vitro tests are consistent with the results of in vivo studies. The new biomicroconcrete type materials were obtained by mixing the solid phase, composed of hybrid hydroxyapatite/chitosan granules and highly reactive α-tricalcium phosphate powder, used as the setting agent. This approach guaranteed a good adhesion of the continuous cement phase to the surface of granules. It has been demonstrated that developed biomicroconcretes are surgically handy, possessed favorable physicochemical and biological properties and can be considered as effective bone implant material. The hierarchical porosity and compressive strength (2-6 MPa) similar to cancellous bone made them suitable for low-load bearing applications. Despite the fact that final setting times of biomicroconcretes were longer than recommended in the literature (i.e., exceeded 15 min), their short cohesion time allows for a successful implantation in a rabbit femoral defect model. Histological analysis and Raman studies revealed newly formed bone tissues around the sides of implanted materials. Furthermore, the process of neovascularization and reconstruction of the bone tissue, as well as a reverse scaffolding process, was visible. No signs of inflammation or adverse tissue reactions were observed during the experiment.


Alginates/chemistry , Bone Substitutes/chemistry , Calcium Phosphates/chemistry , Chitosan/chemistry , Durapatite/chemistry , Animals , Compressive Strength , Male , Materials Testing , Porosity , Rabbits
12.
J Mater Sci Mater Med ; 28(8): 117, 2017 Aug.
Article En | MEDLINE | ID: mdl-28681217

Nowadays successful regeneration of damaged bone tissue is a major problem of the reconstructive medicine and tissue engineering. Recently a great deal of attention has been focused on calcium phosphate cements (CPCs) as the effective bone fillers. Despite a number of studies regarding CPCs, only a few compare the physicochemical and biological properties of α-TCP based materials of various phase compositions. In our study we compared the effect of several components (calcite, hydroxyapatite doped with Mg2+, CO32- or Ag+ ions, alginate, chitosan and methylcellulose) on the physicochemical and biological properties of α-TCP-based bone cements. The influence of materials composition on their setting times, microstructure and biochemical stability in simulated body fluid was determined. A number of in vitro laboratory methods, including ICP-OES, metabolic activity test, time-lapse microscopic observation and SEM observations were performed in order to assess biocompatibility of the studied biomaterials. The positive outcome of XTT tests for ceramic extracts demonstrated that all investigated cement-type composites may be considered cytocompatible according to ISO 10993-5 standard. Results of our research indicate that multiphase cements containing MgCHA, AgHA and calcite combined with αTCP enhanced cell viability in comparison to material based only on αTCP. Furthermore materials containing chitosan and methylcellulose possessed higher cytocompatibility than those with alginate.


Bone Cements/chemistry , Calcium Carbonate/chemistry , Calcium Phosphates/chemistry , Durapatite/chemistry , Alginates/chemistry , Biocompatible Materials/chemistry , Cell Line, Tumor , Cell Survival , Chitosan/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Ions , Magnesium/chemistry , Materials Testing , Methylcellulose/chemistry , Microscopy, Electron, Scanning , Porosity , Powders , Silver/chemistry , Sodium/chemistry , Surface Properties , X-Ray Diffraction
13.
Biomed Mater Eng ; 28(3): 235-246, 2017.
Article En | MEDLINE | ID: mdl-28527187

BACKGROUND: Material properties of the scaffolds as well as their microstructure are vital in determining in vivo cellular response. Three-dimensional (3D), highly porous scaffolds are used in tissue engineering to provide a suitable microenvironment and to support regeneration of bone. Both pore sizes and their architecture, in particular interconnection density, impact functionality of scaffold during its biomedical applications. OBJECTIVE: In this paper a comparative study of the microstructure of highly porous hydroxyapatite scaffolds produced via gelcasting of foamed slurries and replication of polyurethane sponge were carried out. METHODS: Quantitative stereological analysis of the microstructure was conducted using transmission X-ray computed microtomography (µCT) and scanning electron microscopy (SEM). Application of the X-ray microtomography allowed obtaining the 2D cross-sectional images of examined samples, and then the 3D reflection of individual samples. RESULTS: In our studies we proved that the distribution of pores in HAp bioceramics can be controlled by selection of the manufacturing method. In the case of material produced by the gelcasting method, the porosity of the samples was about ∼78 vol.%, while for the method of replication of the porous organic matrix it was higher ∼84 vol.%. Application of gelcasting method resulted in bioceramics with the macropores ranging from 95 µm to 158 µm (the modal value of 120 µm). Furthermore, micropores of size 34 µm-60 µm - so called "windows", were observed on spherical macropores surfaces. In the case of replication of polyurethane sponge only macropores from 295 µm to 337 µm (the modal value of 300 µm) were obtained. Application of µCT and SEM give more information than classical mercury intrusion porosimetry in studies of porous bioceramics. Developed materials met the criteria for porous bone substitutes. CONCLUSIONS: The results of quantitative description of microstructure allowed determining the differences between porous hydroxyapatite bioceramics obtained via replication of porous organic matrix and gelcasting of foamed slurry. The stereological analysis demonstrated, that bioceramics prepared via gelling of foamed slurry has a lower pore size and grains (1.1-1.9 µm) than the material obtained by the method of replication of polyurethane sponge (2.1-2.3 µm). Based on morphological analysis the porosity of tested materials was determined. In the case of material produce by the gelcasting, porosity of the samples was about ∼78 vol.%, while for method of replication of the porous organic matrix the porosity was higher and constituted ∼84 vol.%. Furthermore, evaluated materials varied in porosity and the pore size distribution. It was stated that the method of gelcasting resulted in hydroxyapatite bioceramics with the macropores diameter (95-158 µm), micropores so called "windows" (34-60 µm) - observed on spherical macropores walls and micropores of size 0.6 µm-1.3 µm, which were visible in sintered areas. When the method of replication of polyurethane sponge was applied only macropores from 295 µm to 337 µm were obtained. The comparable values of shape factors such as elongation, curvature of pours boundary and convexity, confirmed that macropores in both studied series had similar shape.


Durapatite/chemistry , Tissue Engineering , Tissue Scaffolds , Bone Substitutes , Cross-Sectional Studies , Microscopy, Electron, Scanning , Porosity , X-Ray Microtomography
14.
J Mater Sci Mater Med ; 26(12): 270, 2015 Dec.
Article En | MEDLINE | ID: mdl-26511138

Calcium phosphate cements (CPC) are valuable bone fillers. Recently they have been also considered as the basis for drug-, growth factors- or cells-delivery systems. Broad possibilities to manipulate CPC composition provide a unique opportunity to obtain materials with a wide range of physicochemical properties. In this study we show that CPC composition significantly influences cell response. Human bone derived cells were exposed to the several well-characterized different cements based on calcium phosphates, magnesium phosphates and calcium sulfate hemihydrate (CSH). Cell viability assays, live/dead staining and real-time observation of cells in contact with the materials (time-laps) were performed. Although all the investigated materials have successfully passed a standard cytocompatibility assay, cell behavior in a direct contact with the materials varied depending on the material and the experimental system. The most recommended were the α-TCP-based materials which proved suitable as a support for cells in a direct contact. The materials which caused a decrease of calcium ions concentration in culture induced the negative cell response, however this effect might be expected efficiently compensated in vivo. All the materials consisting of CSH had negative impact on the cells. The obtained results strongly support running series of cytocompatibility studies for preclinical evaluation of bone cements.


Bone Cements , Calcium Phosphates , Cells, Cultured , Humans , X-Ray Diffraction
...