Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Mol Med ; 16(6): 1352-1378, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38724625

RESUMEN

Mutations in CHCHD10, a mitochondrial protein with undefined functions, are associated with autosomal dominant mitochondrial diseases. Chchd10 knock-in mice harboring a heterozygous S55L mutation (equivalent to human pathogenic S59L) develop a fatal mitochondrial cardiomyopathy caused by CHCHD10 aggregation and proteotoxic mitochondrial integrated stress response (mtISR). In mutant hearts, mtISR is accompanied by a metabolic rewiring characterized by increased reliance on glycolysis rather than fatty acid oxidation. To counteract this metabolic rewiring, heterozygous S55L mice were subjected to chronic high-fat diet (HFD) to decrease insulin sensitivity and glucose uptake and enhance fatty acid utilization in the heart. HFD ameliorated the ventricular dysfunction of mutant hearts and significantly extended the survival of mutant female mice affected by severe pregnancy-induced cardiomyopathy. Gene expression profiles confirmed that HFD increased fatty acid utilization and ameliorated cardiomyopathy markers. Importantly, HFD also decreased accumulation of aggregated CHCHD10 in the S55L heart, suggesting activation of quality control mechanisms. Overall, our findings indicate that metabolic therapy can be effective in mitochondrial cardiomyopathies associated with proteotoxic stress.


Asunto(s)
Cardiomiopatías , Dieta Alta en Grasa , Proteínas Mitocondriales , Animales , Dieta Alta en Grasa/efectos adversos , Cardiomiopatías/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/dietoterapia , Femenino , Ratones , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ácidos Grasos/metabolismo , Modelos Animales de Enfermedad , Embarazo
2.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38370710

RESUMEN

Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of structurally identified and yet-undefined metabolites across tissue cryosections. While numerous software packages enable pixel-by-pixel imaging of individual metabolites, the research community lacks a discovery tool that images all metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs informs discovery of unanticipated molecules contributing to shared metabolic pathways, uncovers hidden metabolic heterogeneity across cells and tissue subregions, and indicates single-timepoint flux through pathways of interest. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling and instrument drift, markedly enhances spatial image resolution, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent tool to enhance knowledge obtained from current spatial metabolite profiling technologies.

3.
EMBO Mol Med ; 15(7): e16951, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37222423

RESUMEN

Mitochondrial diseases are a heterogeneous group of monogenic disorders that result from impaired oxidative phosphorylation (OXPHOS). As neuromuscular tissues are highly energy-dependent, mitochondrial diseases often affect skeletal muscle. Although genetic and bioenergetic causes of OXPHOS impairment in human mitochondrial myopathies are well established, there is a limited understanding of metabolic drivers of muscle degeneration. This knowledge gap contributes to the lack of effective treatments for these disorders. Here, we discovered fundamental muscle metabolic remodeling mechanisms shared by mitochondrial disease patients and a mouse model of mitochondrial myopathy. This metabolic remodeling is triggered by a starvation-like response that evokes accelerated oxidation of amino acids through a truncated Krebs cycle. While initially adaptive, this response evolves in an integrated multiorgan catabolic signaling, lipid store mobilization, and intramuscular lipid accumulation. We show that this multiorgan feed-forward metabolic response involves leptin and glucocorticoid signaling. This study elucidates systemic metabolic dyshomeostasis mechanisms that underlie human mitochondrial myopathies and identifies potential new targets for metabolic intervention.


Asunto(s)
Enfermedades Mitocondriales , Miopatías Mitocondriales , Ratones , Animales , Humanos , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Metabolismo Energético , Lípidos
4.
bioRxiv ; 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36865125

RESUMEN

Mutations in CHCHD10 , a mitochondrial protein with undefined functions, are associated with autosomal dominant mitochondrial diseases. Chchd10 knock-in mice harboring a heterozygous S55L mutation (equivalent to human pathogenic S59L) develop a fatal mitochondrial cardiomyopathy caused by CHCHD10 aggregation and proteotoxic mitochondrial integrated stress response (mtISR). In mutant hearts, mtISR is accompanied by a metabolic rewiring characterized by increased reliance on glycolysis rather than fatty acid oxidation. To counteract this metabolic rewiring, heterozygous S55L mice were subjected to chronic high fat diet (HFD) to decrease insulin sensitivity and glucose uptake and enhance fatty acid utilization in the heart. HFD ameliorated the ventricular dysfunction of mutant hearts and significantly extended the survival of mutant female mice affected by severe pregnancy-induced cardiomyopathy. Gene expression profiles confirmed that HFD increased fatty acid utilization and ameliorated cardiomyopathy markers. Importantly, HFD also decreased accumulation of aggregated CHCHD10 in the S55L heart, suggesting activation of quality control mechanisms. Overall, our findings indicate that metabolic therapy can be effective in mitochondrial cardiomyopathies associated with proteotoxic stress.

5.
Cell Metab ; 27(5): 1007-1025.e5, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29657030

RESUMEN

Using molecular, biochemical, and untargeted stable isotope tracing approaches, we identify a previously unappreciated glutamine-derived α-ketoglutarate (αKG) energy-generating anaplerotic flux to be critical in mitochondrial DNA (mtDNA) mutant cells that harbor human disease-associated oxidative phosphorylation defects. Stimulating this flux with αKG supplementation enables the survival of diverse mtDNA mutant cells under otherwise lethal obligatory oxidative conditions. Strikingly, we demonstrate that when residual mitochondrial respiration in mtDNA mutant cells exceeds 45% of control levels, αKG oxidative flux prevails over reductive carboxylation. Furthermore, in a mouse model of mitochondrial myopathy, we show that increased oxidative αKG flux in muscle arises from enhanced alanine synthesis and release into blood, concomitant with accelerated amino acid catabolism from protein breakdown. Importantly, in this mouse model of mitochondriopathy, muscle amino acid imbalance is normalized by αKG supplementation. Taken together, our findings provide a rationale for αKG supplementation as a therapeutic strategy for mitochondrial myopathies.


Asunto(s)
ADN Mitocondrial/genética , Glutamina/metabolismo , Ácidos Cetoglutáricos , Mitocondrias , Miopatías Mitocondriales , Adaptación Fisiológica , Alanina/metabolismo , Animales , Modelos Animales de Enfermedad , Metabolismo Energético , Células HeLa , Humanos , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/uso terapéutico , Masculino , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/metabolismo , Mutación , Fosforilación Oxidativa
6.
J Cell Sci ; 130(21): 3713-3727, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28864766

RESUMEN

cAMP regulates a wide variety of physiological functions in mammals. This single second messenger can regulate multiple, seemingly disparate functions within independently regulated cell compartments. We have previously identified one such compartment inside the matrix of the mitochondria, where soluble adenylyl cyclase (sAC) regulates oxidative phosphorylation (OXPHOS). We now show that sAC knockout fibroblasts have a defect in OXPHOS activity and attempt to compensate for this defect by increasing OXPHOS proteins. Importantly, sAC knockout cells also exhibit decreased probability of endoplasmic reticulum (ER) Ca2+ release associated with diminished phosphorylation of the inositol 3-phosphate receptor. Restoring sAC expression exclusively in the mitochondrial matrix rescues OXPHOS activity and reduces mitochondrial biogenesis, indicating that these phenotypes are regulated by intramitochondrial sAC. In contrast, Ca2+ release from the ER is only rescued when sAC expression is restored throughout the cell. Thus, we show that functionally distinct, sAC-defined, intracellular cAMP signaling domains regulate metabolism and Ca2+ signaling.


Asunto(s)
Adenilil Ciclasas/metabolismo , Señalización del Calcio , Calcio/metabolismo , AMP Cíclico/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Adenilil Ciclasas/genética , Animales , Fraccionamiento Celular , Línea Celular , Retículo Endoplásmico/ultraestructura , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Mitocondrias/ultraestructura , Fosforilación Oxidativa , Consumo de Oxígeno
7.
Molecules ; 22(9)2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28832533

RESUMEN

Coenzyme A (CoA) and acetyl-coenzyme A (acetyl-CoA) play essential roles in cell energy metabolism. Dysregulation of the biosynthesis and functioning of both compounds may contribute to various pathological conditions. We describe here a simple and sensitive HPLC-UV based method for simultaneous determination of CoA and acetyl-CoA in a variety of biological samples, including cells in culture, mouse cortex, and rat plasma, liver, kidney, and brain tissues. The limits of detection for CoA and acetyl-CoA are >10-fold lower than those obtained by previously described HPLC procedures, with coefficients of variation <1% for standard solutions, and 1-3% for deproteinized biological samples. Recovery is 95-97% for liver extracts spiked with Co-A and acetyl-CoA. Many factors may influence the tissue concentrations of CoA and acetyl-CoA (e.g., age, fed, or fasted state). Nevertheless, the values obtained by the present HPLC method for the concentration of CoA and acetyl-CoA in selected rodent tissues are in reasonable agreement with literature values. The concentrations of CoA and acetyl-CoA were found to be very low in rat plasma, but easily measurable by the present HPLC method. The method should be useful for studying cellular energy metabolism under normal and pathological conditions, and during targeted drug therapy treatment.


Asunto(s)
Acetilcoenzima A/sangre , Acetilcoenzima A/química , Cromatografía Líquida de Alta Presión , Coenzima A/sangre , Coenzima A/química , Espectrofotometría Ultravioleta , Animales , Línea Celular , Corteza Cerebral/enzimología , Femenino , Humanos , Ratones , Ratas
8.
Nat Commun ; 8: 15074, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28429737

RESUMEN

As noted by Warburg, many cancer cells depend on the consumption of glucose. We performed a genetic screen to identify factors responsible for glucose addiction and recovered the two subunits of the xCT antiporter (system xc-), which plays an antioxidant role by exporting glutamate for cystine. Disruption of the xCT antiporter greatly improves cell viability after glucose withdrawal, because conservation of glutamate enables cells to maintain mitochondrial respiration. In some breast cancer cells, xCT antiporter expression is upregulated through the antioxidant transcription factor Nrf2 and contributes to their requirement for glucose as a carbon source. In cells carrying patient-derived mitochondrial DNA mutations, the xCT antiporter is upregulated and its inhibition improves mitochondrial function and cell viability. Therefore, although upregulation of the xCT antiporter promotes antioxidant defence, it antagonizes glutamine metabolism and restricts nutrient flexibility. In cells with mitochondrial dysfunction, the potential utility of xCT antiporter inhibition should be further tested.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/genética , Cistina/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Antioxidantes/metabolismo , Transporte Biológico , Línea Celular Tumoral , Supervivencia Celular , Medios de Cultivo/química , Medios de Cultivo/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Glucosa/farmacología , Células HEK293 , Células HeLa , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Transducción de Señal
9.
Ann Neurol ; 76(4): 620-4, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25090982

RESUMEN

Energy metabolism could influence amyotrophic lateral sclerosis (ALS) and progressive lateral sclerosis (PLS) pathogenesis and the response to therapy. We developed a novel assay to simultaneously assess mitochondrial content and membrane potential in patients' skin fibroblasts. In ALS and PLS fibroblasts, membrane potential was increased and mitochondrial content decreased, relative to healthy controls. In ALS higher mitochondrial membrane potential correlated with age at diagnosis, and in PLS it correlated with disease severity. These unprecedented findings in ALS and PLS fibroblasts could shed new light onto disease pathogenesis and help in developing biomarkers to predict disease evolution and the individual response to therapy in motor neuron diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Metabolismo Energético/fisiología , Fibroblastos/patología , Enfermedad de la Neurona Motora/patología , Piel/patología , Adulto , Anciano , Aldehídos , Biomarcadores , Humanos , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Persona de Mediana Edad , Rodaminas/metabolismo
10.
Hum Mol Genet ; 22(19): 3869-82, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23720495

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of a CAG repeat encoding a polyglutamine tract in the huntingtin (Htt) protein. The mutation leads to neuronal death through mechanisms which are still unknown. One hypothesis is that mitochondrial defects may play a key role. In support of this, the activity of mitochondrial complex II (C-II) is preferentially reduced in the striatum of HD patients. Here, we studied C-II expression in different genetic models of HD expressing N-terminal fragments of mutant Htt (mHtt). Western blot analysis showed that the expression of the 30 kDa Iron-Sulfur (Ip) subunit of C-II was significantly reduced in the striatum of the R6/1 transgenic mice, while the levels of the FAD containing catalytic 70 kDa subunit (Fp) were not significantly changed. Blue native gel analysis showed that the assembly of C-II in mitochondria was altered early in N171-82Q transgenic mice. Early loco-regional reduction in C-II activity and Ip protein expression was also demonstrated in a rat model of HD using intrastriatal injection of lentiviral vectors encoding mHtt. Infection of the rat striatum with a lentiviral vector coding the C-II Ip or Fp subunits induced a significant overexpression of these proteins that led to significant neuroprotection of striatal neurons against mHtt neurotoxicity. These results obtained in vivo support the hypothesis that structural and functional alterations of C-II induced by mHtt may play a critical role in the degeneration of striatal neurons in HD and that mitochondrial-targeted therapies may be useful in its treatment.


Asunto(s)
Cuerpo Estriado/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Enfermedad de Huntington/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Células Cultivadas , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Complejo II de Transporte de Electrones/genética , Femenino , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/genética , Proteínas Mutantes/metabolismo , Mutación , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
11.
Biochim Biophys Acta ; 1832(8): 1194-206, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23523468

RESUMEN

Cardiolipin is a mitochondrion-specific phospholipid that stabilizes the assembly of respiratory chain complexes, favoring full-yield operation. It also mediates key steps in apoptosis. In Barth syndrome, an X chromosome-linked cardiomyopathy caused by tafazzin mutations, cardiolipins display acyl chain modifications and are present at abnormally low concentrations, whereas monolysocardiolipin accumulates. Using immortalized lymphoblasts from Barth syndrome patients, we showed that the production of abnormal cardiolipin led to mitochondrial alterations. Indeed, the lack of normal cardiolipin led to changes in electron transport chain stability, resulting in cellular defects. We found a destabilization of the supercomplex (respirasome) I+III2+IVn but also decreased amounts of individual complexes I and IV and supercomplexes I+III and III+IV. No changes were observed in the amounts of individual complex III and complex II. We also found decreased levels of complex V. This complex is not part of the supercomplex suggesting that cardiolipin is required not only for the association/stabilization of the complexes into supercomplexes but also for the modulation of the amount of individual respiratory chain complexes. However, these alterations were compensated by an increase in mitochondrial mass, as demonstrated by electron microscopy and measurements of citrate synthase activity. We suggest that this compensatory increase in mitochondrial content prevents a decrease in mitochondrial respiration and ATP synthesis in the cells. We also show, by extensive flow cytometry analysis, that the type II apoptosis pathway was blocked at the mitochondrial level and that the mitochondria of patients with Barth syndrome cannot bind active caspase-8. Signal transduction is thus blocked before any mitochondrial event can occur. Remarkably, basal levels of superoxide anion production were slightly higher in patients' cells than in control cells as previously evidenced via an increased protein carbonylation in the taz1Δ mutant in the yeast. This may be deleterious to cells in the long term. The consequences of mitochondrial dysfunction and alterations to apoptosis signal transduction are considered in light of the potential for the development of future treatments.


Asunto(s)
Apoptosis/genética , Síndrome de Barth/genética , Síndrome de Barth/patología , Cardiolipinas/metabolismo , Mitocondrias/patología , Mutación/genética , Factores de Transcripción/genética , Aciltransferasas , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Síndrome de Barth/metabolismo , Cardiolipinas/genética , Caspasa 8/genética , Caspasa 8/metabolismo , Muerte Celular/genética , Línea Celular , Citrato (si)-Sintasa/genética , Citrato (si)-Sintasa/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Linfocitos/metabolismo , Linfocitos/patología , Lisofosfolípidos/genética , Lisofosfolípidos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Transducción de Señal/genética , Superóxidos/metabolismo , Factores de Transcripción/metabolismo
12.
J Neurosci ; 32(2): 583-92, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22238093

RESUMEN

Prohibitin is an essential mitochondrial protein that has been implicated in a wide variety of functions in many cell types, but its role in neurons remains unclear. In a proteomic screen of rat brains in which ischemic tolerance was induced by electrical stimulation of the cerebellar fastigial nucleus, we found that prohibitin is upregulated in mitochondria. This observation prompted us to investigate the role of prohibitin in neuronal death and survival. We found that prohibitin is upregulated also in the ischemic tolerance induced by transient ischemia in vivo, or oxygen-glucose deprivation in neuronal cultures. Cell fractionation and electron-microscopic immunolabeling studies demonstrated that prohibitin is localized to neuronal mitochondria. Upregulation of prohibitin in neuronal cultures or hippocampal slices was markedly neuroprotective, whereas prohibitin gene silencing increased neuronal vulnerability, an effect associated with loss of mitochondrial membrane potential and increased mitochondrial production of reactive oxygen species. Prohibitin upregulation was associated with reduced production of reactive oxygen species in mitochondria exposed to the complex I inhibitor rotenone. In addition, prohibitin protected complex I activity from the inhibitory effects of rotenone. These observations, collectively, establish prohibitin as an endogenous neuroprotective protein involved in ischemic tolerance. Prohibitin exerts beneficial effects on neurons by reducing mitochondrial free radical production. The data with complex I activity suggest that prohibitin may stabilize the function of complex I. The protective effect of prohibitin has potential translational relevance in diseases of the nervous system associated with mitochondrial dysfunction and oxidative stress.


Asunto(s)
Isquemia Encefálica/prevención & control , Radicales Libres/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Proteínas Represoras/fisiología , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Hipocampo/patología , Masculino , Neuronas/metabolismo , Neuronas/patología , Técnicas de Cultivo de Órganos , Células PC12 , Cultivo Primario de Células , Prohibitinas , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/genética
13.
J Biol Chem ; 282(24): 17557-62, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17452320

RESUMEN

In the mammalian mitochondrial electron transfer system, the majority of electrons enter at complex I, go through complexes III and IV, and are finally delivered to oxygen. Previously we generated several mouse cell lines with suppressed expression of the nuclearly encoded subunit 4 of complex IV. This led to a loss of assembly of complex IV and its defective function. Interestingly, we found that the level of assembled complex I and its activity were also significantly reduced, whereas levels and activity of complex III were normal or up-regulated. The structural and functional dependence of complex I on complex IV was verified using a human cell line carrying a nonsense mutation in the mitochondrially encoded complex IV subunit 1 gene. Our work documents that, although there is no direct electron transfer between them, an assembled complex IV helps to maintain complex I in mammalian cells.


Asunto(s)
Complejo IV de Transporte de Electrones/fisiología , Complejo I de Transporte de Electrón/fisiología , Mitocondrias/metabolismo , Animales , Línea Celular , Humanos , Ratones , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Interferencia de ARN
14.
Hum Mol Genet ; 15(13): 2157-69, 2006 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16740593

RESUMEN

Mitochondrial DNA (mtDNA) mutations cause heterogeneous disorders in humans. MtDNA exists in multiple copies per cell, and mutations need to accumulate beyond a critical threshold to cause disease, because coexisting wild-type mtDNA can complement the genetic defect. A better understanding of the molecular determinants of functional complementation among mtDNA molecules could help us shedding some light on the mechanisms modulating the phenotypic expression of mtDNA mutations in mitochondrial diseases. We studied mtDNA complementation in human cells by fusing two cell lines, one containing a homoplasmic mutation in a subunit of respiratory chain complex IV, COX I, and the other a distinct homoplasmic mutation in a subunit of complex III, cytochrome b. Upon cell fusion, respiration is recovered in hybrids cells, indicating that mitochondria fuse and exchange genetic and protein materials. Mitochondrial functional complementation occurs frequently, but with variable efficiency. We have investigated by native gel electrophoresis the molecular organization of the mitochondrial respiratory chain in complementing hybrid cells. We show that the recovery of mitochondrial respiration correlates with the presence of supramolecular structures (supercomplexes) containing complexes I, III and IV. We suggest that critical amounts of complexes III or IV are required in order for supercomplexes to form and provide mitochondrial functional complementation. From these findings, supercomplex assembly emerges as a necessary step for respiration, and its defect sets the threshold for respiratory impairment in mtDNA mutant cells.


Asunto(s)
ADN Mitocondrial/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Células Híbridas/metabolismo , Mutación/genética , Línea Celular , Respiración de la Célula/genética , Respiración de la Célula/fisiología , Codón sin Sentido/genética , Citocromos b/genética , Citocromos b/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Mutación del Sistema de Lectura/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos
15.
Thyroid ; 16(4): 325-31, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16646677

RESUMEN

OBJECTIVE: We conducted a study on the functional characteristics of mitochondria in an oxyphilic thyroid tumor cell line, which may provide useful clues about Hürthle cell tumors carcinogenesis. DESIGN: The functional study on thyroid tumors with cell oxyphilia (Hürthle cell tumors), characterized by mitochondrial hyperplasia, was carried out in XTC.UC1, and B-CPAP, an oxyphilic and nonoxyphilic thyroid tumor cell line, respectively. MAIN OUTCOME: XTC.UC1 cell line showed higher activity of mitochondrial respiratory complexes I and II and decreased activity of complex III. The increased activity of complex I was not matched by increased expression of complex I subunits. The XTC.UC1 cells relied mostly on oxidative phosphorylation for energy conservation, although their mitochondrial energetic function was less efficient when related to mitochondrial content of the cells. Finally, the oxyphilic cell line produced significantly higher amounts of reactive oxygen species (ROS) in comparison with B-CPAP cell line. CONCLUSION: The involvement of ROS in mitochondrial biogenesis and proliferation as well as in carcinogenesis and apoptosis indicate that differences in activity of respiratory chain components and their unbalance may be responsible for development of morphological and functional changes observed in thyroid tumors with cell oxyphilia.


Asunto(s)
Adenoma Oxifílico/metabolismo , Mitocondrias/metabolismo , Neoplasias de la Tiroides/metabolismo , Antimicina A/farmacología , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Humanos , Ácido Láctico/biosíntesis , Mitocondrias/efectos de los fármacos , Fosforilación Oxidativa , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo
16.
Hum Mol Genet ; 13(24): 3171-9, 2004 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-15496432

RESUMEN

Inter-molecular heterologous mitochondrial DNA (mtDNA) recombination is known to occur in yeast and plants. Nevertheless, its occurrence in human cells is still controversial. To address this issue we have fused two human cytoplasmic hybrid cell lines, each containing a distinct pathogenic mtDNA mutation and specific sets of genetic markers. In this hybrid model, we found direct evidence of recombination between these two mtDNA haplotypes. Recombinant mtDNA molecules in the hybrid cells were identified using three independent experimental approaches. First, recombinant molecules containing genetic markers from both parental alleles were demonstrated with restriction fragment length polymorphism of polymerase chain reaction products, by measuring the relative frequencies of each marker. Second, fragments of recombinant mtDNA were cloned and sequenced to identify the regions involved in the recombination events. Finally, recombinant molecules were demonstrated directly by Southern blot using appropriate combinations of polymorphic restriction sites and probes. This combined approach confirmed the existence of heterogeneous species of recombinant mtDNA molecules in the hybrid cells. These findings have important implications for mtDNA-related diseases, the interpretation of human evolution and population genetics and forensic analyses based on mtDNA genotyping.


Asunto(s)
ADN Mitocondrial , Mitocondrias/genética , Recombinación Genética , Southern Blotting , Clonación Molecular , Haplotipos , Humanos , Células Híbridas , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción
17.
Biochim Biophys Acta ; 1658(1-2): 89-94, 2004 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-15282179

RESUMEN

This mini-review summarizes our present view of the biochemical alterations associated with mitochondrial DNA (mtDNA) point mutations. Mitochondrial cytopathies caused by mutations of mtDNA are well-known genetic and clinical entities, but the biochemical pathogenic mechanisms are often obscure. Leber's hereditary optic neuropathy (LHON) is due to three main mutations in genes for complex I subunits. Even if the catalytic activity of complex I is maintained except in cells carrying the 3460/ND1 mutation, in all cases there is a change in sensitivity to complex I inhibitors and an impairment of mitochondrial respiration, eliciting the possibility of generation of reactive oxygen species (ROS) by the complex. Neurogenic muscle weakness, Ataxia and Retinitis Pigmentosa (NARP), is due to a mutation in the ATPase-6 gene. In NARP patients ATP synthesis is strongly depressed to an extent proportional to the mutation load; nevertheless, ATP hydrolysis and ATP-driven proton translocation are not affected. It is suggested that the NARP mutation affects the ability of the enzyme to couple proton transport to ATP synthesis. A point mutation in subunit III of cytochrome c oxidase is accompanied by a syndrome resembling MELAS: however, no major biochemical defect is found, if we except an enhanced production of ROS. The mechanism of such enhancement is at present unknown. In this review, we draw attention to a few examples in which the overproduction of ROS might represent a common step in the induction of clinical phenotypes and/or in the progression of several human pathologies associated with mtDNA point mutations.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Ataxia/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético/genética , Humanos , Síndrome MELAS/genética , Enfermedades Mitocondriales/enzimología , Enfermedades del Nervio Óptico/genética , Mutación Puntual , Especies Reactivas de Oxígeno/metabolismo , Retinitis Pigmentosa/genética , Síndrome
18.
Biofactors ; 20(4): 251-8, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15706061

RESUMEN

Dichlorophenol indophenol (DCIP) reduction by intracellualr pyridine nucleotides was investigated in two different lines of cultured cells characterized by enhanced production of reacive oxygen species (ROS) with respect to suitable controls. The first line denominated XTC-UC1 was derived from a metastasis of an oxyphilic thyroid tumor characterized by mitochondrial hyperplasia and compared with a line (B-CPAP) derived from a papillary thyroid carcinoma with normal mitochondrial mass. The second line (170 MN) was a cybrid line derived from rho0 cells from an osteosarcoma line (143B) fused with platelets from a patient with a nucleotide 9957 mutation in mitochondrial DNA (encoding for cytochrome c oxidase subunit III) in comparison with the parent 143B line. The experimental lines had no major decreases of electron transfer activities with respect to the controls; both of them, however, exhibited an increased peroxide production. The XTC-UC1 cell line exhibited enhanced activity with respect to control of dicoumarol-sensitive DCIP reduction, identified with membrane bound DT-diaphorase, whereas dicoumarol insensitive DCIP reduction was not significantly changed. On the other hand the mtDNA mutated cybrids exhibited a strong increase of both dicoumarol sensitive and insensitive DCIP reduction. The results suggest that enhanced oxidative stress and not deficient respiratory activity per se is the stimulus triggering over-expression of plasma membrane oxidative enzymes.


Asunto(s)
Membrana Celular/enzimología , Mitocondrias/fisiología , Estrés Oxidativo/fisiología , Oxidorreductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama , Línea Celular Tumoral , Femenino , Humanos , Cinética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Neoplasias de la Tiroides
19.
J Biol Chem ; 278(8): 5639-45, 2003 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-12431997

RESUMEN

Members of the BCL-2-related antiapoptotic family of proteins have been shown previously to regulate ATP/ADP exchange across the mitochondrial membranes and to prevent the loss of coupled mitochondrial respiration during apoptosis. We have found that BCL-2/BCL-x(L) can also improve mitochondrial oxidative phosphorylation in cells harboring pathogenic mutations in mitochondrial tRNA genes. The effect of BCL-2 overexpression in mutated cells was independent from apoptosis and was presumably associated with a modulation of adenine nucleotide exchange between mitochondria and cytosol. These results suggest that BCL-2 can regulate respiratory functions in response to mitochondrial distress by regulating the levels of adenine nucleotides.


Asunto(s)
Apoptosis/fisiología , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Fosforilación Oxidativa , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Nucleótidos de Adenina/metabolismo , Neoplasias Óseas , Citosol/metabolismo , Humanos , Membranas Intracelulares/enzimología , Osteosarcoma , Células Tumorales Cultivadas , Proteína bcl-X
20.
J Biol Chem ; 277(33): 29626-33, 2002 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-12050154

RESUMEN

A growing body of evidence suggests that impaired mitochondrial energy production and increased oxidative radical damage to the mitochondria could be causally involved in motor neuron death in amyotrophic lateral sclerosis (ALS) and in familial ALS associated with mutations of Cu,Zn superoxide dismutase (SOD1). For example, morphologically abnormal mitochondria and impaired mitochondrial histoenzymatic respiratory chain activities have been described in motor neurons of patients with sporadic ALS. To investigate further the role of mitochondrial alterations in the pathogenesis of ALS, we studied mitochondria from transgenic mice expressing wild type and G93A mutated hSOD1. We found that a significant proportion of enzymatically active SOD1 was localized in the intermembrane space of mitochondria. Mitochondrial respiration, electron transfer chain, and ATP synthesis were severely defective in G93A mice at the time of onset of the disease. We also found evidence of oxidative damage to mitochondrial proteins and lipids. On the other hand, presymptomatic G93A transgenic mice and mice expressing the wild type form of hSOD1 did not show significant mitochondrial abnormalities. Our findings suggest that G93A-mutated hSOD1 in mitochondria may cause mitochondrial defects, which contribute to precipitating the neurodegenerative process in motor neurons.


Asunto(s)
Mitocondrias/metabolismo , Mutación , Superóxido Dismutasa/metabolismo , Animales , Humanos , Membranas Intracelulares/enzimología , Ratones , Ratones Transgénicos , Mitocondrias/enzimología , Fosforilación Oxidativa , Oxígeno/metabolismo , Médula Espinal/enzimología , Superóxido Dismutasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...