Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Parasitol ; 40(12): 1347-65, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20600072

RESUMEN

Throughout the Plasmodium life cycle, malaria parasites repeatedly undergo rapid cellular growth and prolific divisions, necessitating intense membrane neogenesis and, in particular, the acquisition of high amounts of phospholipids. At the intraerythrocytic stage, glycerophospholipids are the main parasite membrane constituents, which mostly originate from the Plasmodium-encoded enzymatic machinery. Several proteins and entire pathways have been characterized and their features reported, thereby generating a global view of glycerophospholipid synthesis across Plasmodium spp. The malaria parasite displays a panoply of pathways that are seldom found together in a single organism. The major glycerophospholipids are synthesized via ancestral prokaryotic CDP-diacylglycerol-dependent pathways and eukaryotic-type de novo pathways. The parasite exhibits additional reactions that bridge some of these routes and are otherwise restricted to some organisms, such as plants, while base-exchange mechanisms are largely unexplored in Plasmodium. Marked differences between Plasmodium spp. have also been reported in phosphatidylcholine and phosphatidylethanolamine synthesis. Little is currently known about glycerophospholipid acquisition at non-erythrocytic stages, but recent data reveal that intrahepatocytic parasites, oocysts and sporozoites import various host lipids, and that de novo fatty acid synthesis is only crucial at the late liver stage. More studies on the different Plasmodium developmental stages are needed, to further assemble the different pieces of this glycerophospholipid synthesis puzzle, which contains highly promising therapeutic targets.


Asunto(s)
Vías Biosintéticas , Glicerofosfolípidos/biosíntesis , Malaria/parasitología , Plasmodium/metabolismo , Animales , Eritrocitos/metabolismo , Eritrocitos/parasitología , Humanos , Malaria/metabolismo , Plasmodium/enzimología , Plasmodium/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo
2.
Mol Biochem Parasitol ; 173(2): 69-80, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20478340

RESUMEN

Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the main membrane phospholipids (PLs) of Plasmodium parasites and can be generated by the de novo (Kennedy) CDP-choline and CDP-ethanolamine pathways and by the CDP-diacylglycerol dependent pathway. The Kennedy pathways initiate from exogenous choline and ethanolamine involving choline kinase (CK) and ethanolamine kinase (EK), followed by the choline-phosphate cytidylyltransferase (CCT) and ethanolamine-phosphate cytidylyltransferase (ECT) that catalyse the formation of CDP-choline and CDP-ethanolamine. Finally, in Plasmodium, PC and PE are apparently synthesized by a common choline/ethanolamine-phosphotransferase (CEPT). Here, we have studied the essential nature of the Kennedy pathways in Plasmodium berghei, a rodent malaria parasite. Sequence analysis of the P. berghei CEPT, CCT, ECT and CK enzymes revealed the presence of all catalytic domains and essential residues and motifs necessary for enzymatic activities. Constructs were designed for the generation of gene knockout and GFP-fusions of the cept, cct, ect and ck genes in P. berghei. We found that all four genes were consistently refractory to knockout attempts. At the same time, successful tagging of these proteins with GFP demonstrated that the loci were targetable and indicated that these genes are essential in P. berghei blood stage parasites. GFP-fusions of CCT, ECT and CK were found in the cytosol whereas the GFP-CEPT mainly localised in the endoplasmic reticulum. These results indicate that both CDP-choline and CDP-ethanolamine de novo pathways are essential for asexual P. berghei development and are non-redundant with other possible sources of PC and PE.


Asunto(s)
Vías Biosintéticas/genética , Genes Esenciales , Genes Protozoarios , Fosfolípidos/biosíntesis , Plasmodium berghei/enzimología , Proteínas Protozoarias/genética , Sangre/parasitología , Técnicas de Inactivación de Genes/métodos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo
3.
J Lipid Res ; 51(1): 81-96, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19561325

RESUMEN

Malaria, a disease affecting humans and other animals, is caused by a protist of the genus Plasmodium. At the intraerythrocytic stage, the parasite synthesizes a high amount of phospholipids through a bewildering number of pathways. In the human Plasmodium falciparum species, a plant-like pathway that relies on serine decarboxylase and phosphoethanolamine N-methyltransferase activities diverts host serine to provide additional phosphatidylcholine and phosphatidylethanolamine to the parasite. This feature of parasitic dependence toward its host was investigated in other Plasmodium species. In silico analyses led to the identification of phosphoethanolamine N-methyltransferase gene orthologs in primate and bird parasite genomes. However, the gene was not detected in the rodent P. berghei, P. yoelii, and P. chabaudi species. Biochemical experiments with labeled choline, ethanolamine, and serine showed marked differences in biosynthetic pathways when comparing rodent P. berghei and P. vinckei, and human P. falciparum species. Notably, in both rodent parasites, ethanolamine and serine were not significantly incorporated into phosphatidylcholine, indicating the absence of phosphoethanolamine N-methyltransferase activity. To our knowledge, this is the first study to highlight a crucial difference in phospholipid metabolism between Plasmodium species. The findings should facilitate efforts to develop more rational approaches to identify and evaluate new targets for antimalarial therapy.


Asunto(s)
Malaria/parasitología , Fosfatidilcolinas/metabolismo , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Fosfatidiletanolaminas/metabolismo , Plasmodium/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Ratones , Datos de Secuencia Molecular , Fosfatidiletanolamina N-Metiltransferasa/clasificación , Fosfatidiletanolamina N-Metiltransferasa/genética , Filogenia , Plasmodium/genética , Alineación de Secuencia , Serina/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
Cell ; 117(4): 503-14, 2004 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-15137943

RESUMEN

Transmission of malaria parasites to mosquitoes is initiated by the obligatory sexual reproduction of the parasite within the mosquito bloodmeal. Differentiation of specialized transmission stages, the gametocytes, into male and female gametes is induced by a small mosquito molecule, xanthurenic acid (XA). Using a Plasmodium berghei strain expressing a bioluminescent calcium sensor, we show that XA triggers a rapid rise in cytosolic calcium specifically in gametocytes that is essential for their differentiation into gametes. A member of a family of plant-like calcium dependent protein kinases, CDPK4, is identified as the molecular switch that translates the XA-induced calcium signal into a cellular response by regulating cell cycle progression in the male gametocyte. CDPK4 is shown to be essential for the sexual reproduction and mosquito transmission of P. berghei. This study reveals an unexpected function for a plant-like signaling pathway in cell cycle regulation and life cycle progression of a malaria parasite.


Asunto(s)
Calcio/metabolismo , Células Germinativas/enzimología , Proteínas de Plantas/metabolismo , Plasmodium berghei/enzimología , Proteínas Quinasas/metabolismo , Reproducción/genética , Secuencia de Aminoácidos/genética , Animales , Secuencia de Bases/genética , Señalización del Calcio/genética , Diferenciación Celular/genética , Culicidae/parasitología , ADN Complementario/análisis , ADN Complementario/genética , Femenino , Flagelos/enzimología , Flagelos/ultraestructura , Células Germinativas/crecimiento & desarrollo , Células Germinativas/ultraestructura , Interacciones Huésped-Parásitos/fisiología , Masculino , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Mutación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/ultraestructura , Proteínas Quinasas/genética , Proteínas Quinasas/aislamiento & purificación , Fase S/genética , Transgenes/genética , Xanturenatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA