Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34389674

RESUMEN

Astrocytes have emerged as a potential source for new neurons in the adult mammalian brain. In mice, adult striatal neurogenesis can be stimulated by local damage, which recruits striatal astrocytes into a neurogenic program by suppression of active Notch signaling (J. P. Magnusson et al., Science 346, 237-241 [2014]). Here, we induced adult striatal neurogenesis in the intact mouse brain by the inhibition of Notch signaling in astrocytes. We show that most striatal astrocyte-derived neurons are confined to the anterior medial striatum, do not express established striatal neuronal markers, and exhibit dendritic spines, which are atypical for striatal interneurons. In contrast to striatal neurons generated during development, which are GABAergic or cholinergic, most adult astrocyte-derived striatal neurons possess distinct electrophysiological properties, constituting the only glutamatergic striatal population. Astrocyte-derived neurons integrate into the adult striatal microcircuitry, both receiving and providing synaptic input. The glutamatergic nature of these neurons has the potential to provide excitatory input to the striatal circuitry and may represent an efficient strategy to compensate for reduced neuronal activity caused by aging or lesion-induced neuronal loss.


Asunto(s)
Astrocitos/fisiología , Conexina 30/metabolismo , Ácido Glutámico/metabolismo , Neuronas/fisiología , Animales , Diferenciación Celular , Conexina 30/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacología , Fenómenos Electrofisiológicos , Neuronas GABAérgicas/enzimología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Interneuronas/enzimología , Proteínas Luminiscentes , Ratones , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Recombinación Genética , Tamoxifeno/farmacología
2.
Stem Cells ; 39(9): 1253-1269, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33963799

RESUMEN

Although previous studies suggest that neural stem cells (NSCs) exist in the adult olfactory bulb (OB), their location, identity, and capacity to generate mature neurons in vivo has been little explored. Here, we injected enhanced green fluorescent protein (EGFP)-expressing retroviral particles into the OB core of adult mice to label dividing cells and to track the differentiation/maturation of any neurons they might generate. EGFP-labeled cells initially expressed adult NSC markers on days 1 to 3 postinjection (dpi), including Nestin, GLAST, Sox2, Prominin-1, and GFAP. EGFP+ -doublecortin (DCX) cells with a migratory morphology were also detected and their abundance increased over a 7-day period. Furthermore, EGFP-labeled cells progressively became NeuN+ neurons, they acquired neuronal morphologies, and they became immunoreactive for OB neuron subtype markers, the most abundant representing calretinin expressing interneurons. OB-NSCs also generated glial cells, suggesting they could be multipotent in vivo. Significantly, the newly generated neurons established and received synaptic contacts, and they expressed presynaptic proteins and the transcription factor pCREB. By contrast, when the retroviral particles were injected into the subventricular zone (SVZ), nearly all (98%) EGFP+ -cells were postmitotic when they reached the OB core, implying that the vast majority of proliferating cells present in the OB are not derived from the SVZ. Furthermore, we detected slowly dividing label-retaining cells in this region that could correspond to the population of resident NSCs. This is the first time NSCs located in the adult OB core have been shown to generate neurons that incorporate into OB circuits in vivo.


Asunto(s)
Células-Madre Neurales , Bulbo Olfatorio , Animales , Diferenciación Celular/fisiología , Interneuronas/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(45): 11625-11630, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30352848

RESUMEN

Increasing age is the greatest known risk factor for the sporadic late-onset forms of neurodegenerative disorders such as Alzheimer's disease (AD). One of the brain regions most severely affected in AD is the hippocampus, a privileged structure that contains adult neural stem cells (NSCs) with neurogenic capacity. Hippocampal neurogenesis decreases during aging and the decrease is exacerbated in AD, but the mechanistic causes underlying this progressive decline remain largely unexplored. We here investigated the effect of age on NSCs and neurogenesis by analyzing the senescence accelerated mouse prone 8 (SAMP8) strain, a nontransgenic short-lived strain that spontaneously develops a pathological profile similar to that of AD and that has been employed as a model system to study the transition from healthy aging to neurodegeneration. We show that SAMP8 mice display an accelerated loss of the NSC pool that coincides with an aberrant rise in BMP6 protein, enhanced canonical BMP signaling, and increased astroglial differentiation. In vitro assays demonstrate that BMP6 severely impairs NSC expansion and promotes NSC differentiation into postmitotic astrocytes. Blocking the dysregulation of the BMP pathway and its progliogenic effect in vivo by intracranial delivery of the antagonist Noggin restores hippocampal NSC numbers, neurogenesis, and behavior in SAMP8 mice. Thus, manipulating the local microenvironment of the NSC pool counteracts hippocampal dysfunction in pathological aging. Our results shed light on interventions that may allow taking advantage of the brain's natural plastic capacity to enhance cognitive function in late adulthood and in chronic neurodegenerative diseases such as AD.


Asunto(s)
Envejecimiento/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Proteína Morfogenética Ósea 6/genética , Proteínas Portadoras/farmacología , Células-Madre Neurales/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Células Madre Adultas/efectos de los fármacos , Células Madre Adultas/metabolismo , Células Madre Adultas/patología , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Proteína Morfogenética Ósea 6/antagonistas & inhibidores , Proteína Morfogenética Ósea 6/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Transgénicos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Transducción de Señal
4.
FASEB J ; 29(4): 1480-92, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25636741

RESUMEN

We studied potential changes in the subventricular zone (SVZ) stem cell niche of the senescence-accelerated mouse prone-8 (SAM-P8) aging model. Bromodeoxyuridine (BrdU) assays with longtime survival revealed a lower number of label-retaining stem cells in the SAM-P8 SVZ compared with the SAM-Resistant 1 (SAM-R1) control strain. We also found that in SAM-P8 niche signaling is attenuated and the stem cell pool is less responsive to the self-renewal niche factor pigmented epithelium-derived factor (PEDF). Protein analysis demonstrated stable amounts of the PEDF ligand in the SAM-P8 SVZ niche; however, SAM-P8 stem cells present a significant expression decrease of patatin-like phospholipase domain containing 2, a receptor for PEDF (PNPLA2-PEDF) receptor, but not of laminin receptor (LR), a receptor for PEDF (LR-PEDF) receptor. We observed changes in self-renewal related genes (hairy and enhancer of split 1 (Hes1), hairy and enhancer of split 1 (Hes5), Sox2] and report that although these genes are down-regulated in SAM-P8, differentiation genes (Pax6) are up-regulated and neurogenesis is increased. Finally, sheltering mammalian telomere complexes might be also involved given a down-regulation of telomeric repeat binding factor 1 (Terf1) expression was observed in SAM-P8 at young age periods. Differences between these 2 models, SAM-P8 and SAM-R1 controls, have been previously detected at more advanced ages. We now describe alterations in the PEDF signaling pathway and stem cell self-renewal at a very young age, which could be involved in the premature senescence observed in the SAM-P8 model.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/patología , Proteínas del Ojo/metabolismo , Ventrículos Laterales/metabolismo , Ventrículos Laterales/patología , Factores de Crecimiento Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Serpinas/metabolismo , Envejecimiento/genética , Animales , Bromodesoxiuridina/metabolismo , Recuento de Células , Proteínas del Ojo/genética , Ratones , Modelos Animales , Modelos Neurológicos , Factores de Crecimiento Nervioso/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Serpinas/genética , Transducción de Señal , Nicho de Células Madre
5.
Neurobiol Aging ; 34(11): 2623-38, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23796660

RESUMEN

Neurogenesis persists in the adult brain as a form of plasticity due to the existence of neural stem cells (NSCs). Alterations in neurogenesis have been found in transgenic Alzheimer's disease (AD) mouse models, but NSC activity and neurogenesis in sporadic AD models remains to be examined. We herein describe a remarkable increase in NSC proliferation in the forebrain of SAMP8, a non-transgenic mouse strain that recapitulates the transition from healthy aging to AD. The increase in proliferation is transient, precedes AD-like symptoms such as amyloid beta 1-42 [Aß(1-42)] increase or gliosis, and is followed by a steep decline at later stages. Interestingly, in vitro studies indicate that secreted Aß(1-42) and PI3K signaling may account for the early boost in NSC proliferation. Our results highlight the role of soluble Aß(1-42) peptide and PI3K in the autocrine regulation of NSCs, and further suggest that over-proliferation of NSCs before the appearance of AD pathology may underlie neurogenic failure during the age-related progression of the disease. These findings have implications for therapeutic approaches based on neurogenesis in AD.


Asunto(s)
Células Madre Adultas/fisiología , Envejecimiento/genética , Envejecimiento/patología , Péptidos beta-Amiloides/farmacología , Proliferación Celular/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Células Madre Adultas/clasificación , Células Madre Adultas/efectos de los fármacos , Factores de Edad , Péptidos beta-Amiloides/metabolismo , Animales , Antígenos CD1/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Bromodesoxiuridina , Células Cultivadas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ventrículos Laterales/citología , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Mutantes , Fragmentos de Péptidos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
6.
Stem Cells ; 30(12): 2796-809, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22987443

RESUMEN

Adult neural stem cells (NSCs) located in the subventricular zone (SVZ) persistently produce new neurons destined to the olfactory bulb (OB). Recent research suggests that the OB is also a source of NSCs that remains largely unexplored. Using single/dual-labeling procedures, we address the existence of NSCs in the innermost layers of the OB. In vivo, these cells are more quiescent that their SVZ counterparts, but after in vitro expansion, they behave similarly. Self-renewal and proliferation assays in co-culture with niche astrocytes indicate that OB-glia restricts NSC activity whereas SVZ-glia has the opposite effect. Gene expression profiling identifies WNT7A as a key SVZ-glial factor lacking in OB-glia that enhances self-renewal, thereby improving the propagation of OB-NSC cultures. These data demonstrate that region-specific glial factors account for in vivo differences in NSC activity and point to WNT7A as a tool that may be instrumental for the NSC expansion phase that precedes grafting.


Asunto(s)
Astrocitos/citología , Células-Madre Neurales/citología , Bulbo Olfatorio/citología , Proteínas Wnt/metabolismo , Animales , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Humanos , Ratones , Proteínas Wnt/genética
7.
Curr Protoc Stem Cell Biol ; Chapter 2: Unit 2D.10, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22605645

RESUMEN

The factors that regulate the switch from adult neural stem cell (aNSC) quiescence to active proliferation are poorly understood. Here we describe a method to study the in vivo effect of a soluble factor on cell cycle entry and proliferation of aNSCs located in the brain neurogenic niches. First, we provide information for implanting osmotic minipumps that will deliver the compound of interest directly into the mouse brain. When combined with the administration of the thymidine analog bromodeoxyuridine (BrdU), this technique is the most basic procedure to study the effects of a soluble factor on aNSC proliferation. We also describe a dual replication labeling protocol using two different halogenated thymidine analogs, chloro- and iododeoxyuridine (CldU and IdU), that allows tracking of proliferating cells and assessing cell cycle re-entry of aNSCs at different time points.


Asunto(s)
Células Madre Adultas/efectos de los fármacos , División Celular/efectos de los fármacos , Halogenación/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Péptidos y Proteínas de Señalización Intercelular/farmacología , Células-Madre Neurales/efectos de los fármacos , Timidina/análogos & derivados , Timidina/farmacología , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Infusiones Intraventriculares , Masculino , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Solubilidad/efectos de los fármacos , Coloración y Etiquetado , Timidina/administración & dosificación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...