Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 9: 854991, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35591944

RESUMEN

Endometriosis is a highly prevalent gynecological disease characterized by lesions in different sites. Regulation of specific estrogen pathways may favor the formation of distinct microenvironments and the progression of endometriosis. However, no study has simultaneously evaluated the gene and protein regulation of the main estrogen-synthesizing enzymes in endometriosis. Thus, our goals were to study the relationship between gene and protein expression of aromatase (CYP19A1 or ARO), steroid sulfatase (STS), and hydroxysteroid 17-beta dehydrogenase (HSD17B1) in superficial (SUP), ovarian (OMA), and deep infiltrating (DIE) endometriotic lesion sites as well as in the eutopic endometrium of patients with (EE) and without (control) endometriosis in the same and large cohort of patients. The site-specific expression of these enzymes within different cells (glandular and stromal components) was also explored. The study included 108 patients surgically diagnosed with endometriosis who provided biopsies of EE and endometriotic lesions and 16 disease-free patients who collected normal endometrium tissue. Our results showed that CYP19A1 was detected in all endometriosis tissues and was in higher levels than in control. Unique patterns of the STS and HSD17B1 levels showed that they were most closely regulated in all tissues, with manifestation at greater levels in DIE compared to the other endometriotic lesion sites, OMA and SUP. Gene and protein expression of ARO, STS, and HSD17B1 occurred at different rates in endometriotic sites or EE. The distinctive levels of these estrogen-synthesizing enzymes in each endometriotic site support the hypothesis of a tissue microenvironment that can both influence and be influenced by the expression of different estrogenic pathways, locally affecting the availability of estrogen needed for maintenance and progression of endometriotic lesions.

2.
Medicina (Kaunas) ; 55(9)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443551

RESUMEN

Background and Objectives: The presence of endometrial-like tissue outside the uterine cavity is a key feature of endometriosis. Although endometriotic lesions appear to be histologically quite similar to the eutopic endometrium, detailed studies comparing both tissues are required because their inner and surrounding cellular arrangement is distinct. Thus, comparison between tissues might require methods, such as laser capture microdissection (LCM), that allow for precise selection of an area and its specific cell populations. However, it is known that the efficient use of LCM depends on the type of studied tissue and on the choice of an adequate protocol. Recent studies have reported the use of LCM in endometriosis studies. The main objective of the present study is to establish a standardized protocol to obtain good-quality microdissected material from eutopic or ectopic endometrium. Materials and Methods: The main methodological steps involved in the processing of the lesion samples for LCM were standardized to yield material of good quality to be further used in molecular techniques. Results: We obtained satisfactory results regarding the yields and integrity of RNA and protein obtained from LCM-processed endometriosis tissues. Conclusion: LCM can provide more precise analysis of endometriosis biopsies, provided that key steps of the methodology are followed.


Asunto(s)
Endometriosis/metabolismo , Endometrio/metabolismo , Expresión Génica , Captura por Microdisección con Láser , Criocirugía , Endometriosis/genética , Endometriosis/patología , Endometriosis/cirugía , Endometrio/patología , Endometrio/cirugía , Femenino , Humanos , Proteínas/análisis , ARN Mensajero/análisis , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...