Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 310: 136765, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36241119

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a class of anthropogenic chemicals used to provide water and stain resistance in many consumer products. Their widespread use, nearly ubiquitous presence across multiple environments, and growing list of adverse health effects has raised concerns among communities. PFAS have been frequently detected and quantified globally in wastewater, groundwater, surface and drinking water; however, the presence of PFAS in swimming pool water - a unique matrix in which constituents may concentrate through evaporation and which also may present a high risk of direct human exposure - has not been reported. Here, ultra-high performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS) was used to monitor 92 PFAS in 54 water samples collected from city, apartment, hotel, and personal swimming pools in six Florida cities. In total, 14 PFAS were detected with six perfluoroalkyl acids - perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA) and perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorobutane sulfonate (PFBS) - detected in every sample. PFHxA accounted for 49% of all PFAS quantified in this study. PFAS profiles were compared between sites as a function of pool type, rate of use, and geographic location. Total ΣPFAS concentrations were similar across pool types, with both the highest (633 ng/L) and lowest (1.9 ng/L) measurements found in public city pools. Between sites, higher PFAS levels were observed in city pools in Miami, Melbourne and Tampa compared to Naples, Orlando and Gainesville. Our findings highlight the potential exposure of PFAS in an underexplored and yet important exposure pathway in communities.


Asunto(s)
Ácidos Alcanesulfónicos , Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Fluorocarburos/análisis , Espectrometría de Masas en Tándem , Natación , Contaminantes Químicos del Agua/análisis , Agua Potable/química , Ácidos Alcanesulfónicos/análisis
2.
Chemosphere ; 301: 134478, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35367496

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) constitute a class of highly stable and extensively manufactured anthropogenic chemicals that have been linked to a variety of adverse health effects in humans and wildlife. These compounds are ubiquitously distributed in the environment and have been measured in aquatic systems globally. However, there are limited data on longitudinal comprehensive assessments of PFAS profiles within sensitive aquatic ecosystems. Surface water samples were collected from the Indian River Lagoon (IRL) and the Atlantic coast within Brevard County (BC), FL in December of 2019 (n = 57) and again from corresponding locations in February of 2021 (n = 40). Samples were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to determine the occurrence, concentration, and distribution of 92 PFAS. No significant difference in total PFAS concentrations were identified between samples collected in 2019 (87 ng/L) and those collected in 2021 (77 ng/L). However, comparisons of PFAS among four natural sub-regions within Brevard County revealed site- and regional-specific differences. The Banana River exhibited the greatest concentration of total PFAS, followed by the southern Indian River, the northern Indian River, and then the Atlantic coast. Six distinct PFAS profiles were identified with the novel application of multivariate statistical cluster analysis, which may be useful for identifying potential sources of PFAS. Elevated total PFAS and unique compound mixtures identified in the Banana River are most likely a result of industrial discharge and extensive historical use of aqueous film-forming foams (AFFF). The environmental persistence of PFAS threatens key ecosystem services and the ecological homeostasis of the Indian River Lagoon - the most biologically diverse estuary in North America. Brevard County offers a unique model site that may be used to investigate potential exposure and health implications for wildlife and adjacent coastal communities, which could be extrapolated to better understand and manage other critical coastal systems.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Ecosistema , Fluorocarburos/análisis , Humanos , Ríos , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
3.
Environ Res ; 208: 112635, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34990607

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals commonly found in everyday consumer products and are an emerging concern due to their ubiquitous presence in ecosystems around the world. PFAS exposure, which often occurs through contaminated water, has been linked to several adverse health effects in humans and wildlife. PFAS can be transported in surface water and storm runoff in the nearshore environment. Episodic events, such as hurricanes, are projected to increase in frequency and intensity, and a critical unanswered question is: how do episodic events influence the concentrations and distributions of emerging contaminants, such as PFAS, in coastal systems? Here, we investigated the impact of the 2019 Hurricane Dorian on the Florida coast to assess how natural disasters, such as hurricanes, influence the fate and transport of PFAS in surface water. Water samples collected throughout the St. Augustine Intracoastal waterway before, during, and after the storm were analyzed and compared with baseline concentrations. Ultra-high-pressure liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was used in the detection and quantification of 23 and 17 PFAS, respectively. Perfluorooctane sulfonic acid (PFOS) was the compound with the highest concentration across all sampling sites. Mean PFOS levels showed the highest increase of 177% during the hurricane and returned to baseline levels after two days. Our findings highlight the need for continued research focused on understanding how large storms near all coastlines can impact the transport of environmental pollutants, such as PFOS, that can have adverse effects on human and environmental health. Further monitoring of PFAS in coastal systems is necessary to identify potential PFAS hotspots, investigate the impacts of episodic events on PFAS transport, develop mitigation practices capable of reducing the risk of PFAS exposure.


Asunto(s)
Ácidos Alcanesulfónicos , Tormentas Ciclónicas , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , Ecosistema , Florida , Fluorocarburos/análisis , Humanos , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
4.
Sci Total Environ ; 809: 151143, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34695459

RESUMEN

Oceans are major sinks for anthropogenic pollutants, including per- and polyfluoroalkyl substances (PFAS). Although PFAS have been detected in surface waters globally, this is the first report of PFAS in a deep (170-400 m) demersal species in the Gulf of Mexico (GoM). Golden Tilefish (Lopholatilus chamaeleonticeps) plasma extracts (n = 185) were investigated for the presence of PFAS using ultra-high performance liquid chromatography-tandem mass spectrometry. A subset of liver tissues (n = 51) were also analyzed for microscopic hepatic changes (MHCs). Overall, nine of the 110 PFAS targeted were detected in Tilefish plasma at relatively high frequencies. Plasma concentrations of total PFAS (Σ9PFAS) ranged from below the detection limit to 27.9 ng g-1 w.w. Significant regional differences were observed with the highest concentrations of PFAS detected in the north central region of the GoM, where substantial industrialization and discharges from the Mississippi River occur. Compared to most wildlife and matrices analyzed globally, the PFAS profiles in Tilefish were unique as they are dominated by PFUnDA. Profile differences are hypothesized to be the result of Tilefish's distinctive lifestyle, habitat, diet, and partitioning characteristics of long-chain PFAS. Several MHCs were identified in this subset of Tilefish that could be detrimental to their health. Significant correlations between PFAS concentrations and biometric indices and MHCs were evident, however, additional research is needed to investigate the role PFAS and PFAS combined with chemical admixtures may play in inducing observed hepatic changes and other physiological effects in Tilefish. These findings give insight into the fate of PFAS at depth in aquatic ecosystems and are cause for concern regarding the health of other deep water benthic biota in GoM and other deepwater sinks for PFAS.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Fluorocarburos/análisis , Hígado/química , Contaminantes Químicos del Agua/análisis
5.
Environ Sci Technol ; 56(10): 6069-6077, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34596397

RESUMEN

One hundred and seventeen street sweeping samples were collected and analyzed for per- and polyfluoroalkyl substances (PFAS). Fifty-six samples were collected in one city (Gainesville, Florida) allowing for an in-depth city-wide characterization. Street sweepings from five other urban areas, (Orlando, n = 15; Key West, n = 15; Pensacola, n = 12; Tampa, n = 13; and Daytona Beach, n = 6) were analyzed to provide a city-to-city comparison of PFAS. Within our analytical workflow, 37 PFAS were quantified across all samples, while the maximum number of PFAS quantified at one site was 26. Of those PFAS quantified in Gainesville, 60% were perfluoroalkyl acids (PFAAs) and 33% were precursors to PFAA. Among the PFAAs, short-chain perfluoroalkyl carboxylic acids (PFCAs) were the dominant class representing 26% of the total PFAS by concentration. In the comparison across different urban cities, the dominant compound by concentration and frequency of detection varied; however, perfluorooctanoic acid (PFOA) and linear perfluorooctanesulfonic acid (PFOSlin) were the two PFAS that were detected the most frequently. This study documents the first-time detection of hexadecafluorosebacic acid and perfluoro-3,6,9-trioxaundecane-1,11-dioic acid within environmental samples.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Carboxílicos , Ciudades , Florida , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
6.
Artículo en Inglés | MEDLINE | ID: mdl-34416677

RESUMEN

An on-line solid phase extraction using a lab-made restricted access media (RAM) was developed as sample preparation procedure for determination of the pharmaceutical compounds caffeine (CAF), carbamazepine (CBZ), norfloxacin (NOR), ciprofloxacin (CIP), fluoxetine (FLX) and venlafaxine in wastewater treatment plant samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This method is suitable for use in routine of analysis, avoiding cross-contamination and requiring only a small sample volume (50 µL), with minimal handling. The method was validated according to international guidelines. The chromatographic efficiency was evaluated using peak resolution and asymmetry parameters. Carryover was also evaluated, in order to ensure reliability of the analysis and the ability to reuse the cartridge. Satisfactory linearity (r2 > 0.99) was obtained for all the compounds. The intra- and inter-day precision values were lower than 5.79 and 14.1%, respectively. The limits of detection ranged from 0.01 to 3 µg L-1 and the limits of quantification were from 0.1 to 5 µg L-1. The method was applied to 20 environmental wastewater samples, with caffeine being the most widely detected compound, at the highest concentration of 392 µg L-1, while other compounds were detected in fewer samples at lower concentrations (up to 9.60 µg L-1). The lab-made modification is a cheaper option for on-line sample preparation, compared to commercially available on-line SPE cartridges and RAM columns. Moreover, a high-throughput procedure was achieved, with an analysis time of 16 min including sample preparation and chromatographic separation. The same RAM column was applied over 200 injections including method optimization, validation and application in wastewater samples without loss of analytical response.


Asunto(s)
Cromatografía Liquida/métodos , Preparaciones Farmacéuticas , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua , Químicos de Laboratorio , Límite de Detección , Modelos Lineales , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/aislamiento & purificación , Reproducibilidad de los Resultados , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
7.
Chemosphere ; 277: 130238, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33770693

RESUMEN

Paper and other plant-based drinking straws are replacing plastic straws in commercial settings in response to trending plastic straw bans and the larger global movement for reducing plastic pollution. The water-resistant properties of many plant-based straws, however, may be attributed to the use of per- and polyfluoroalkyl substances (PFAS) during manufacturing. In this study, 43 brands of straws (5 plastic, 29 paper, 9 other plant-based) were analyzed for the presence of 53 semi-volatile PFAS using ultra high-performance liquid chromatography tandem mass spectrometry. While the plastic straws had no measurable PFAS, 21 PFAS were detected in the paper and other plant-based straws, with total mean PFAS concentrations (triplicate analysis) ranging from 0.043 ± 0.004 ng/straw to 29.1 ± 1.66 ng/straw (median = 0.554 ng/straw). Perfluorobutanoic acid (PFBA), perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) were the most frequently detected species. In a follow-up experiment, the brand with the highest PFAS levels and most diversity was tested for leaching in water at initial temperatures of 4 °C, 20 °C, and 90 °C. Approximately 2/3 of the total extractable PFAS leached compared to the initial methanol extraction. Semi-volatile PFAS concentrations measured in this study may be the result of manufacturing impurities or contamination, as PFAS approved for food-contact use are, typically, polymeric species. The presence of PFAS in plant-based drinking straws demonstrates that they are not fully biodegradable, contributing to the direct human ingestion of PFAS and to the cycle of PFAS between waste streams and the environment.


Asunto(s)
Ácidos Alcanesulfónicos , Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , Agua Potable/análisis , Fluorocarburos/análisis , Humanos , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Technol Lett ; 8: 66-72, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37850075

RESUMEN

Municipal solid waste contain diverse and significant amounts of per- and polyfluoroalkyl substances (PFAS), and these compounds may transform throughout the "landfilling" process from transport through landfill degradation. Fresh vehicle leachates, from commercial and residential waste collection vehicles at a transfer station, were measured for 51 PFAS. Results were compared to PFAS levels obtained from aged landfill leachate at the disposal facility. The landfill leachate was dominated by perfluoroalkyl acids (PFAAs, including perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs); 86% of the total PFAS, by median mass concentration), while the majority of PFAS present in commercial and residential waste vehicle leachate were PFAA-precursors (70% and 56% of the total PFAS, by median mass concentration, respectively), suggesting precursor transformation to PFAAs during the course of landfill disposal. In addition, several PFAS, which are not routinely monitored-perfluoropropane sulfonic acid (PFPrS), 8-chloro-perfluoro-1-octane sulfonic acid (8Cl-PFOS), chlorinated polyfluoroether sulfonic acids (6:2, 8:2 Cl-PFESAs), sodium dodecafluoro-3H-4,8-dioxanonanoate (NaDONA), and perfluoro-4-ethylcyclohexanesulfonate (PFECHS)-were detected. Potential degradation pathways were proposed based on published studies: transformation of polyfluoroalkyl phosphate diester (diPAPs) and fluorotelomer sulfonic acids (FTS) to form PFCAs via formation of intermediate products such as fluorotelomer carboxylic acids (FTCAs).

9.
Environ Adv ; 5: 1-8, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38268644

RESUMEN

Sediment samples from 25 locations in the Pensacola Bay System (PBS) watershed were analyzed for the presence of 51 per- and polyfluoroalkyl substances (PFAS) using ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and selected reaction monitoring. Results revealed quantifiable concentrations of PFAS in all sampling locations. More specifically, perfluorobutanoic acid (PFBA) was present in every sediment sample with a minimum and maximum concentration of 0.04 to 0.48 ng g-1 dry weight, respectively, across the 25 sites with an average of 0.1 ± 0.09 ng g-1. While PFOS, with an average of 0.11 ± 0.14 ng g-1 (range:

10.
Anal Methods ; 12(44): 5415-5423, 2020 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-33125009

RESUMEN

Herein, we present an approach for the analytical determination and quantification of semi-permanent hair dyes in wash water samples released during washing of dyed hair employing a liquid chromatography-tandem mass spectrometry-selected reaction monitoring (LC-MS/MS-SRM) method with electrospray ionization detection. Specifically, Basic Blue 99 (BB 99), Basic Brown 16 (BB 16), Basic Red 76 (BR 76), Basic Yellow 57 (BY 57) and Acid Violet 43 (AV 43) are hair dyes with properties known to be harmful to human health and the environment. The hair dyes are present in commercial formulation and are discharged into the effluents without fully effective treatment. The detection and quantification by the LC-MS/MS technique show a linear relationship for each studied hair dye in the concentration range from 1 to 200 ng mL-1 in aqueous solution. The limits of detection and quantification were found from 0.66 to 20 ng mL-1 and from 2.0 to 63 ng mL-1, respectively, values that are compatible with the level required in wash water analysis. The method was applied in samples collected from 5 successive washings of hair dyed with a commercial formulation using the established procedure. BB 99 and BY 57 dyes have lower fixation on the scalp and hair, showing 866 ng mL-1 and 145 ng mL-1 release on the first day of washing, respectively. The accumulation of dye and slow release after washing can lead to future problems for both the environment and living organisms.

11.
Environ Sci Technol ; 54(19): 12550-12559, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32865409

RESUMEN

Large volumes of per- and polyfluoroalkyl substances (PFAS)-contaminated wastewaters, such as municipal solid waste landfill leachates, pose a challenge for PFAS treatment technologies in practice today. In this study, the surfactant properties of PFAS were exploited to concentrate the compounds in foam produced via the bubble aeration of landfill leachate. The effectiveness of the foaming technique for concentrating PFAS varied by compound, with a mean removal percentage (the percent difference between PFAS in leachate before and after foam removal) of 69% and a median removal percentage of 92% among the 10 replicate foaming experiments. This technique appears to be similarly effective at sequestering sulfonates and carboxylate PFAS compounds and is less effective at concentrating the smallest and largest PFAS molecules. The results of this study suggest that for the pretreatment or preconcentration of landfill leachates, foaming to sequester PFAS may provide a practical approach that could be strategically coupled to high-energy PFAS-destructive treatment technologies. The process described herein is simple and could feasibly be applied at a relatively low cost at most landfills, where leachate aeration is already commonplace.


Asunto(s)
Fluorocarburos , Eliminación de Residuos , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Residuos Sólidos/análisis , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
12.
J Pharm Biomed Anal ; 172: 67-77, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31029802

RESUMEN

A potent synthetic α2-adrenergic agonist called PT-31, (3-(2-chloro-6-fluorobenzyl)-imidazolidine-2,4-dione), was recently detected as a potential drug to be used as an adjuvant drug to treat chronic pain. The excellent pharmacological property of PT-31 highlights the importance in elucidating its metabolism, which could provide valuable information about its metabolite profile for further pharmacokinetics studies and additionally to estimate the impact of its metabolites on the efficacy, safety and elimination of PT-31. In this work, the study of the in vitro metabolism of PT-31 was initially carried out by using a liquid chromatography coupled to ion trap multiple-stage mass spectrometer (LC-IT-MSn) and a hybrid triple quadrupole/linear ion trap mass spectrometer (LC-QTrap). The production of at least three unknown oxidative metabolites was observed. Structural identification of the unknown metabolites was carried out by combination of LC-MS experiments, including selected reaction monitoring (SRM) and multi-stage full scan experiments. Further analysis of 1H-NMR led to the structural confirmation of the major metabolite. The results indicated that PT-31 was metabolized by a hydroxylation reaction in the imidazolidine-2,4-dione ring in rat and human liver microsomes, producing the metabolite 3-(2-chloro-6-fluorobenzyl)-5-hydroxyimidazolidine-2,4-dione in rat liver microsomes. A carbon hydroxylation onto the benzyl ring, produced two other minor metabolites of the PT-31 in rat liver microsomes.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/metabolismo , Analgésicos/metabolismo , Microsomas Hepáticos/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacocinética , Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Analgésicos/farmacocinética , Analgésicos/uso terapéutico , Animales , Dolor Crónico/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Humanos , Imidazolidinas/metabolismo , Imidazolidinas/farmacocinética , Imidazolidinas/uso terapéutico , Espectroscopía de Resonancia Magnética , Oxidación-Reducción , Ratas , Espectrometría de Masas en Tándem
13.
Environ Pollut ; 242(Pt A): 863-871, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30036840

RESUMEN

The present work evaluates the action of nitroreductase enzyme immobilized on Tosylactivated magnetic particles (MP-Tosyl) on three disperse dyes which contain nitro and azo groups. The dyes included Disperse Red 73 (DR 73), Disperse Red 78 (DR 78), and Disperse Red 167 (DR 167). The use of a magnet enabled the rapid and easy removal of the immobilized enzyme after biotransformation; this facilitated the identification of the products generated using high-performance liquid chromatography with diode array detector (HPLC-DAD) and mass spectrometry (LC-MS/MS). The main products formed by the in vitro biotransformation were identified as the product of nitro group reduction to the correspondent amine groups, which were denoted as follows: 50% of 2-(2-(4-((2-cyanoethyl)(ethyl)amino)phenyl)hydrazinyl)-5-nitrobenzonitrile, 98% of 3-((4-((4-amino-2-chlorophenyl) diazenyl)phenyl) (ethyl)amino)propanenitrile and 99% of (3-acetamido-4 - ((4-amino-2-chlorophenyl) diazenyl) phenyl) azanediyl) bis (ethane-2,1-diyl) for DR 73, DR 78 and DR 167, respectively. Based on the docking studies, the dyes investigated were found to be biotransformed by nitroreductase enzyme due to their favorable interaction with the active site of the enzyme. Theoretical results show that DR73 dye exhibits a relatively lower rate of degradation; this is attributed to the cyanide substituent which affects the electron density of the azo group. The docking studies also indicate that all the dyes presented significant reactivity towards DNA. However, Disperse Red 73 was found to exhibit a substantially higher reactivity compared to the other dyes; this implies that the dye possesses a relatively higher mutagenic power. The docking results also show that DR 73, DR 78 and DR 167 may be harmful to both humans and the environment, since the mutagenicity of nitro compounds is associated with the products formed during the reduction of nitro groups. These products can interact with biomolecules, including DNA, causing toxic and mutagenic effects.


Asunto(s)
Biotransformación , Cromatografía Liquida , Colorantes/metabolismo , Nitrorreductasas/metabolismo , Espectrometría de Masas en Tándem , Compuestos Azo , Cromatografía Líquida de Alta Presión , Colorantes/análisis , ADN/metabolismo , Humanos , Modelos Químicos , Modelos Teóricos , Pruebas de Mutagenicidad , Mutágenos/análisis , Fenómenos Físicos
14.
Ecotoxicol Environ Saf ; 160: 114-126, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-29793200

RESUMEN

Synthetic azo dyes have increasingly become a matter of great concern as a result of the genotoxic and mutagenic potential of the products derived from azo dye biotransformation. This work evaluates the manner in which reducing enzymes produced by Escherichia coli (E. coli) act on three disperse dyes bearing azo groups, namely Disperse Red 73 (DR 73), Disperse Red 78 (DR 78), and Disperse Red 167 (DR 167). UV-Vis spectrophotometry, high-performance liquid chromatography with diode array detector (HPLC-DAD), and liquid chromatography mass spectrometry (LC-MS/MS) were applied towards the identification of the main products. Seven days of incubation of the azo dyes with the tested enzymes yielded a completely bleached solution. 3-4-Aminophenyl-ethyl-amino-propanitrile was detected following the biotransformation of both DR 73 and DR 78. 4-Nitroaniline and 2-chloro-4-nitroaniline were detected upon the biotransformation of DR 73 and DR 78, respectively. The main products derived from the biotransformation of DR 167 were dimethyl 3,3'-3-acetamido-4-aminophenyl-azanedyl-dipropanoate and 2-chloro-4-nitroaniline. The results imply that DR 73 lost the CN- substituent during the biotransformation. Furthermore, theoretical calculations were also carried out aiming at evaluating the interaction and reactivity of these compounds with DNA. Taken together, the results indicate that DR 73, DR 78, and DR 167 pose health risks and serious threats to both human beings and the environment at large as their biotransformation produces harmful compounds such as amines, which have been widely condemned by the International Agency for Research on Cancer.


Asunto(s)
Compuestos Azo , Colorantes , Escherichia coli/metabolismo , Compuestos Azo/química , Compuestos Azo/metabolismo , Compuestos Azo/toxicidad , Biotransformación , Cromatografía Líquida de Alta Presión , Colorantes/química , Colorantes/metabolismo , Colorantes/toxicidad , Humanos , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Xenobióticos/química , Xenobióticos/metabolismo , Xenobióticos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...