Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Int J Biol Macromol ; 256(Pt 1): 128325, 2024 Jan.
Article En | MEDLINE | ID: mdl-38007012

Bacteriocins are ribosomally made bacterial peptides that have outstanding contributions in the field of food industry, as biopreservatives, and promising potentials in the medical field for improving human and animal health. Bacteriocins have many advantages over antibiotics such as being primary metabolites with relatively simpler biosynthetic mechanisms, which made their bioengineering for activity or specificity improving purposes much easier. Also, bacteriocins are degraded by proteolytic enzymes and do not stay in environment, which reduce chances of developing resistance. Bacteriocins can improve activity of some antibiotics, and some bacteriocins show potency against multidrug-resistant bacteria. Moreover, some potent bacteriocins have antiviral, antifungal, and antiprotozoal (antileishmanial) activities. On the other hand, bacteriocins have been introduced into the treatment of some ulcers and types of cancer. These potentials make bacteriocins attract extra attention as promising biotechnological tool. Hence, the history, characteristics, and classification of bacteriocins are described in this review. Furthermore, the main difference between bacteriocins and other antimicrobial peptides is clarified. Also, bacteriocins biosynthesis and identified modes of action are elucidated. Additionally, current and potential applications of bacteriocins in food and medical fields are highlighted. Finally, future perspectives concerning studying bacteriocins and their applications are discussed.


Bacteriocins , Lactobacillales , Humans , Bacteriocins/pharmacology , Bacteriocins/metabolism , Lactobacillales/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism
2.
Int J Biol Macromol ; 178: 170-179, 2021 May 01.
Article En | MEDLINE | ID: mdl-33639188

Iron-enriched Cordyceps militaris was obtained by adding FeSO4 solution to the mycelia for biotransformation. The polysaccharide-iron (III) was extracted by water extraction and alcohol precipitation. High performance liquid chromatography showed that the crude polysaccharide-iron (III) had three components. The second component was purified by Sephadex G-150 and named as CPS-iron-II. The average molecular weight of CPS-iron-II was 44.136 kDa. The content of iron was 2.73%. The monosaccharide composition analysis indicated that the CPS-iron-II was composed of rhamnose, arabinose, galactose, glucose, mannose, galacturonic acid with percentage ratio of 0.94:3.12:27.01:36.62:30.20:2.12. The results of methylation analysis revealed that the CPS-iron-II was made of →2)-ß-D-Glcp-(1→, with →2, 4)-α-D-Glcp-(1→ highly branched. Congo-red test showed that CPS-iron-II can cause flocculation of Congo red solution. The anti-oxidative analysis showed that antioxidant activity of CPS-iron-II was almost equal to that of Vc. The manuscript provided a new way for the preparation of polysaccharide-iron(III) from Cordyceps militaris.


Antioxidants/chemistry , Cordyceps/chemistry , Ferric Compounds/chemistry , Polysaccharides/chemistry , Molecular Structure , Molecular Weight
3.
J Biosci Bioeng ; 126(5): 603-610, 2018 Nov.
Article En | MEDLINE | ID: mdl-29929768

Lactococcin Z is a novel Lactococcus-specific bacteriocin produced by Lactococcus lactis QU 7 that shares 55.6% identity with lactococcin A. To identify the receptor targeted by lactococcin Z, several lactococcin Z-resistant mutants were generated from the sensitive strain, L. lactis IL1403. The resistant mutants showed difficulties in utilising mannose and glucose as sole carbon sources, contrary to their pattern of growth in the presence of galactose as a sole carbon source. Mutations were found in the ptnC and ptnD genes of lactococcin Z-resistant mutants, which encode the mannose phosphotransferase system (Man-PTS) components, IIC and IID, respectively; therefore, IIC and IID are proposed as potential receptors employed by lactococcin Z and are the same receptors targeted by lactococcin A. Both lactococcins A and Z share a high percentage identity in their N-termini regions in contrast to their C-termini that show less similarity; this may explain the difference in their action mechanisms as well as the lack of cross-immunity between them. Although lactococcin Z showed bactericidal activity, it neither dissipated membrane potential nor formed pores on the membranes of sensitive cells, in sharp contrast to the pore-forming lactococcin A.


Bacteriocins/genetics , Bacteriocins/metabolism , Lactococcus lactis , Galactose/metabolism , Galactose/pharmacology , Lactococcus lactis/genetics , Lactococcus lactis/growth & development , Lactococcus lactis/metabolism , Microbial Sensitivity Tests , Organisms, Genetically Modified
...