Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
Mol Biol Rep ; 51(1): 690, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796575

INTRODUCTION: Methamphetamine (METH) is an addictive psychostimulant with deleterious effects on the central nervous system. Chronic use of METH in high doses impairs cognition, attention and executive functions, but the underlying mechanisms are still unclear. Sirtuin 1 (SIRT1) is a post-translational regulator that is downregulated following METH neurotoxicity. Melatonin is a neuroprotective hormone that enhances mitochondrial metabolism. Here, we evaluated the effect of melatonin on METH-induced attention deficits disorder and the involvement of the miR-181/SIRT1 axis in melatonin neuroprotection. METHODS AND RESULTS: METH at a dose of 5 mg/kg was injected for 21 consecutive days. The animals were assigned to receive either melatonin or the vehicle after METH injections. Attention levels were evaluated with abject-based attention test. In the prefrontal cortex, the expression levels of miR-181a-5p, SIRT1, p53 and CCAR2, as well as the mtDNA copy numbers were evaluated using qRT-PCR and western blotting. The outcomes revealed that melatonin treatment following METH injections improved METH-induced attention deficits. METH toxicity can be associated with changes in the miR-181/SIRT1 axis, elevated levels of p53 and COXII, and decreased levels of mtDNA in the prefrontal cortex of adult rats. Interestingly, administration of melatonin can improve the expression of these molecules and reduces the toxic effects of METH. CONCLUSION: Melatonin ameliorated the neurotoxicity of METH in the prefrontal cortex and the miR-181/SIRT1 axis is involve in the protective effects of melatonin. However, melatonin can be potentially administrated to improve attention impairment in METH use disorders.


Melatonin , Methamphetamine , MicroRNAs , Prefrontal Cortex , Sirtuin 1 , Melatonin/pharmacology , Methamphetamine/toxicity , Methamphetamine/adverse effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Rats , Neuroprotective Agents/pharmacology , Attention/drug effects , Rats, Wistar , Central Nervous System Stimulants/pharmacology
2.
Cell Commun Signal ; 22(1): 228, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622735

Cancer is a major public health problem worldwide with more than an estimated 19.3 million new cases in 2020. The occurrence rises dramatically with age, and the overall risk accumulation is combined with the tendency for cellular repair mechanisms to be less effective in older individuals. Conventional cancer treatments, such as radiotherapy, surgery, and chemotherapy, have been used for decades to combat cancer. However, the emergence of novel fields of cancer research has led to the exploration of innovative treatment approaches focused on immunotherapy, epigenetic therapy, targeted therapy, multi-omics, and also multi-target therapy. The hypothesis was based on that drugs designed to act against individual targets cannot usually battle multigenic diseases like cancer. Multi-target therapies, either in combination or sequential order, have been recommended to combat acquired and intrinsic resistance to anti-cancer treatments. Several studies focused on multi-targeting treatments due to their advantages include; overcoming clonal heterogeneity, lower risk of multi-drug resistance (MDR), decreased drug toxicity, and thereby lower side effects. In this study, we'll discuss about multi-target drugs, their benefits in improving cancer treatments, and recent advances in the field of multi-targeted drugs. Also, we will study the research that performed clinical trials using multi-target therapeutic agents for cancer treatment.


Antineoplastic Agents , Neoplasms , Humans , Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Drug Delivery Systems
3.
Med Oncol ; 41(5): 125, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652207

Plant-derived immunomodulators and antitumor factors have appealed lots of attention from natural product scientists for their efficiency and safety and their important contribution to well-designed targeted drug action and delivery mechanisms. Zerumbone (ZER), the chief component of Zingiber zerumbet rhizomes, has been examined for its wide-spectrum in the treatment of multi-targeted diseases. The rhizomes have been used as food flavoring agents in numerous cuisines and in flora medication. Numerous in vivo and in vitro experiments have prepared confirmation of ZER as a potent immunomodulator as well as a potential anti-tumor agent. This review is an interesting compilation of all the important results of the research carried out to date to investigate the immunomodulatory and anticancer properties of ZER. The ultimate goal of this comprehensive review is to supply updated information and a crucial evaluation on ZER, including its chemistry and immunomodulating and antitumour properties, which may be of principal importance to supply a novel pathway for subsequent investigation to discover new agents to treat cancers and immune-related sickness. In addition, updated information on the toxicology of ZER has been summarized to support its safety profile.


Glioma , Neoplasms , Sesquiterpenes , Animals , Humans , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Glioma/drug therapy , Neoplasms/drug therapy , Sesquiterpenes/therapeutic use , Sesquiterpenes/pharmacology , Zingiberaceae/chemistry
4.
Int J Pharm ; 653: 123880, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38350498

The use of cerium oxide nanoparticles (CeO2NPs) in diabetic wound repair substances has shown promising results. Therefore, the study was conducted to introduce a novel nano-based wound dressing containing chitosan nanoparticles encapsulated with green synthesized cerium oxide nanoparticles using Thymus vulgaris extract (CeO2-CSNPs). The physical properties and structure of the nanoparticles were analyzed using XRD, DLS, FESEM and FTIR techniques. The electrospun PCL/cellulose acetate-based nanofiber was prepared and CeO2-CSNPs were integrated on the PCL/CA membrane by electrospraying. The physicochemical properties, morphology and biological characteristics of the electrospun nanocomposite were evaluated. The results showed that the nanocomposite with 0.1 % CeO2-CSNPs exhibited high antibacterial performance against S. aureus (<58.59 µg/mL). The PCL/CA/CeO2-CSNPs nanofiber showed significant antioxidant activity up to 89.59 %, cell viability improvement, and cell migration promotion up to 90.3 % after 48 h. The in vivo diabetic wound healing experiment revealed that PCL/CA/CeO2-CSNPs nanofibers can significantly increase the repair rate of diabetic wounds by up to 95.47 % after 15 days. The results of this research suggest that PCL/CA nanofiber mats functionalized with CeO2-CSNPs have the potential to be highly effective in treating diabetes-related wounds.


Cellulose/analogs & derivatives , Cerium , Chitosan , Diabetes Mellitus , Nanofibers , Nanoparticles , Humans , Nanofibers/chemistry , Chitosan/chemistry , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing
5.
Exp Cell Res ; 435(1): 113926, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38228225

The present research aims to evaluate the efficacy of Silibinin-loaded mesoporous silica nanoparticles (Sil@MSNs) immobilized into polylactic-co-glycolic acid/Collagen (PLGA/Col) nanofibers on the in vitro proliferation of adipose-derived stem cells (ASCs) and cellular senescence. Here, the fabricated electrospun PLGA/Col composite scaffolds were coated with Sil@MSNs and their physicochemical properties were examined by FTIR, FE-SEM, and TGA. The growth, viability and proliferation of ASCs were investigated using various biological assays including PicoGreen, MTT, and RT-PCR after 21 days. The proliferation and adhesion of ASCs were supported by the biological and mechanical characteristics of the Sil@MSNs PLGA/Col composite scaffolds, according to FE- SEM. PicoGreen and cytotoxicity analysis showed an increase in the rate of proliferation and metabolic activity of hADSCs after 14 and 21 days, confirming the initial and controlled release of Sil from nanofibers. Gene expression analysis further confirmed the increased expression of stemness markers as well as hTERT and telomerase in ASCs seeded on Sil@MSNs PLGA/Col nanofibers compared to the control group. Ultimately, the findings of the present study introduced Sil@MSNs PLGA/Col composite scaffolds as an efficient platform for long-term proliferation of ASCs in tissue engineering.


Nanofibers , Tissue Scaffolds , Cell Adhesion , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Silybin/pharmacology , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Collagen/pharmacology , Collagen/chemistry , Tissue Engineering , Stem Cells , Cell Proliferation , Cells, Cultured , Organic Chemicals
6.
Cancer Cell Int ; 24(1): 46, 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38287318

Recently, the presence of different nanoparticles (NPs) has developed targeting drug delivery in treatment of cancer cell. Targeted drug delivery systems using NPs have shown great promise in improving the efficacy of intracellular uptake as well as local concentration of therapeutics with minimizing side effects. The current study planned to synthesized resveratrol-loaded magnetic niosomes nanoparticles (RSV-MNIONPs) and evaluate their cytotoxicity activity in pancreatic cancer cells. For this aim, magnetic nanoparticles (MNPs) were synthesized and loaded into niosomes (NIOs) by the thin film hydration technique and then characterized via DLS, FT-IR, TEM, SEM and VSM techniques. Moreover, the cytotoxic activity of the RSV-MNIONPs on the Capan-1 cells line was assessed by the MTT test. The distribution number of RSV-MNIONPs was gained about 80 nm and 95 nm with surface charge of - 14.0 mV by SEM and TEM analysis, respectively. RSV loading efficacy in NIOs was about 85%, and the drug releases pattern displayed a sustained discharge with a maximum amount about 35% and 40%, within 4 h in pH = 7.4 and pH = 5.8, respectively. The cytotoxicity of the RSV-MNIONPs in the presence of an external magnetic field is higher than that of the RSV, indicating enhanced cellular uptake in their encapsulated states. Furthermore, RSV loaded MNNPs were found to induce more cell cycle arrest at the G0/G1 checkpoint than free RSV. Compared with RSV-treated cells, the mRNA expression levels of BAX, Bcl2, FAS, P 53, Cyclin D and hTERT, were significantly changed in cells treated with RSV loaded MNNPs. The niosomes NPs approaches have been widely used to attain higher solubility, improved bioavailability, enhanced stability, and control delivery of RSV. Our formulation displayed antitumor activity and can be considered an appropriate carrier with a great potential for future usage in cancer therapy.

7.
Immunol Invest ; 53(2): 160-184, 2024 Feb.
Article En | MEDLINE | ID: mdl-38031988

Systemic lupus erythematosus (SLE) is an autoimmune disease with an unknown etiology that has widespread clinical and immunological manifestations. Despite the increase in knowledge about the pathogenesis process and the increase in treatment options, however, the treatments fail in half of the cases. Therefore, there is still a need for research on new therapies. Mesenchymal stem cells (MSCs) are powerful regulators of the immune system and can reduce the symptoms of systemic lupus erythematosus. This study aimed to review the mechanisms of immune system modulation by MSCs and the role of these cells in the treatment of SLE. MSCs suppress T lymphocytes through various mechanisms, including the production of transforming growth factor-beta (TGF-B), prostaglandin E2 (PGE2), nitric oxide (NO), and indolamine 2 and 3-oxygenase (IDO). In addition, MSCs inhibit the production of their autoantibodies by inhibiting the differentiation of lymphocytes. The production of autoantibodies against nuclear antigens is an important feature of SLE. On the other hand, MSCs inhibit antigen delivery by antigen-presenting cells (APCs) to T lymphocytes. Studies in animal models have shown the effectiveness of these cells in treating SLE. However, few studies have been performed on the effectiveness of this treatment in humans. It can be expected that new treatment strategies for SLE will be introduced in the future, given the promising results of MSCs application.


Lupus Erythematosus, Systemic , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Humans , Cells, Cultured , Autoantibodies
8.
BMC Biotechnol ; 23(1): 55, 2023 12 19.
Article En | MEDLINE | ID: mdl-38115008

In tissue engineering (TE) and regenerative medicine, the accessibility of engineered scaffolds that modulate inflammatory states is extremely necessary. The aim of the current work was to assess the efficacy of metformin (MET) incorporated in PLGA/Collagen nanofibers (Met-PLGA/Col NFs) to modulate RAW264.7 macrophage phenotype from pro-inflammatory status (M1) to anti-inflammatory status (M2). Given this, MET-PLGA/Col NFs were fabricated using an electrospinning technique. Structural characterization such as morphology, chemical and mechanical properties, and drug discharge pattern were assessed. MTT assay test exposed that MET-PLGA/Col NFs remarkably had increased cell survival in comparison with pure PLGA/Collagen NFs and control (p < 0.05) 72 h after incubation. Based on the qPCR assay, a reduction in the expression of iNOS-2 and SOCS3 was found in the cells seeded on MET-PLGA/Col NFs, demonstrating the substantial modulation of the M1 phenotype to the M2 phenotype. Moreover, it was determined a main decrease in the pro-inflammatory cytokines and mediator's expression but the growth factors amount related to anti-inflammatory M2 were meaningfully upregulated. Finally, MET-PLGA/Col NFs possibly will ensure a beneficial potential for effective variation of the macrophage response from an inflammatory phase (M1) to a pro-regenerative (M2) phase.


Nanofibers , Tissue Engineering , Tissue Engineering/methods , Regenerative Medicine , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Collagen , Macrophages , Anti-Inflammatory Agents
9.
J Biol Eng ; 17(1): 73, 2023 Nov 24.
Article En | MEDLINE | ID: mdl-38001515

Due to their outstanding structures and properties, three-dimensional (3D) hydrogels and nanoparticles have been widely studied and indicated a very high potential for medical, therapeutic, and diagnostic applications. However, hydrogels and nanoparticles systems have particular drawbacks that limit their widespread applications. In recent years, the incorporation of nanostructured systems into hydrogel has been developed as a novel way for the formation of new biomaterials with various functions to solve biomedical challenges. In this study, alginate-loaded Zinc- laponite-curcumin (Zn/La/Cur) nanocomposites were fabricated via ionic cross-linking. The prepared nanocomposite hydrogels were characterized via FTIR and FE-SEM. Moreover, energy dispersive x-ray spectroscopy (EDX) was used to study the elements of the Zn/La/Cur nanocomposite. The NIH3T3 fibroblast cell line was utilized for the MTT assay to determine the cell viability of the fabricated alginate-loaded Zn/La/Cur nanocomposites. MTT results demonstrated that there was no evidence of toxicity in the samples. These outcomes suggest that applying Al/Zn/La/Cur nanocomposite as a biological agent could be a novel tissue engineering strategy for treating soft tissue disorders.

10.
BMC Biotechnol ; 23(1): 21, 2023 07 11.
Article En | MEDLINE | ID: mdl-37434201

Gelatin methacrylate-based hydrogels (GelMA) were widely used in tissue engineering and regenerative medicine. However, to manipulate their various chemical and physical properties and create high-efficiency hydrogels, different materials have been used in their structure. Eggshell membrane (ESM) and propolis are two nature-derived materials that could be used to improve the various characteristics of hydrogels, especially structural and biological properties. Hence, the main purpose of this study is the development of a new type of GelMA hydrogel containing ESM and propolis, for use in regenerative medicine. In this regard, in this study, after synthesizing GelMA, the fragmented ESM fibers were added to it and the GM/EMF hydrogel was made using a photoinitiator and visible light irradiation. Finally, GM/EMF/P hydrogels were prepared by incubating GM/EMF hydrogels in the propolis solution for 24 h. After various structural, chemical, and biological characterizations, it was found that the hydrogels obtained in this study offer improved morphological, hydrophilic, thermal, mechanical, and biological properties. The developed GM/EMF/P hydrogel presented more porosity with smaller and interconnected pores compared to the other hydrogels. GM/EMF hydrogels due to possessing EMF showed compressive strength up to 25.95 ± 1.69 KPa, which is more than the compressive strength provided by GM hydrogels (24.550 ± 4.3 KPa). Also, GM/EMF/P hydrogel offered the best compressive strength (44.65 ± 3.48) due to the presence of both EMF and propolis. GM scaffold with a contact angle of about 65.41 ± 2.199 θ showed more hydrophobicity compared to GM/EMF (28.67 ± 1.58 θ), and GM/EMF/P (26.24 ± 0.73 θ) hydrogels. Also, the higher swelling percentage of GM/EMF/P hydrogels (343.197 ± 42.79) indicated the high capacity of this hydrogel to retain more water than other scaffolds. Regarding the biocompatibility of the fabricated structures, MTT assay results showed that GM/EMF/P hydrogel significantly (p-value < 0.05) supported cell viability. Based on the results, it seems that GM/EMF/P hydrogel could be a promising biomaterial candidate for use in various fields of regenerative medicine.


Ascomycota , Propolis , Animals , Hydrogels , Egg Shell , Biocompatible Materials
11.
Cancer Cell Int ; 23(1): 98, 2023 May 20.
Article En | MEDLINE | ID: mdl-37210528

Glioblastoma (GBM) is an aggressive type of cancer that originates in the cells called astrocytes, which support the functioning of nerve cells. It can develop in either the brain or the spinal cord and is also known as glioblastoma multiform. GBM is a highly aggressive cancer that can occur in either the brain or spinal cord. The detection of GBM in biofluids offers potential advantages over current methods for diagnosing and treatment monitoring of glial tumors. Biofluid-based detection of GBM focuses on identifying tumor-specific biomarkers in blood and cerebrospinal fluid. To date, different methods have been used to detect biomarkers of GBM, ranging from various imaging techniques to molecular approaches. Each method has its own strengths and weaknesses. The present review aims to scrutinize multiple diagnostic methods for GBM, with a focus on proteomics methods and biosensors. In other words, this study aims to provide an overview of the most significant research findings based on proteomics and biosensors for the diagnosis of GBM.

12.
Med Oncol ; 40(6): 170, 2023 May 08.
Article En | MEDLINE | ID: mdl-37156929

Colorectal cancer (CRC) is the third broadly identified cancer in the world. The ineffectiveness of colorectal cancer treatment is redundantly reported. Natural bioactive compounds have gained popularity in reducing the drawback of conventional anti-cancer agents. Curcumin (Cur) and Artemisinin (Art) are materials of a natural source that have been utilized to treat numerous kinds of cancers. Although the benefits of bioactive materials, their utilization is limited because of poor solubility, bioavailability, and low dispersion rate in aqueous media. Nano delivery system such as niosome can improve the bioavailability and stability of bioactive compounds within the drug. In current work, we used Cur-Art co-loaded niosomal nanoparticles (Cur-Art NioNPs) as an anti-tumor factor versus colorectal cancer cell line. The synthesized formulations were characterized using dynamic light scattering, scanning electron microscopy, and FTIR. The proliferation ability of the cells and expression of apoptosis-associated gene were MTT assay and qRT-PCR, respectively. Cur-Art NioNPs exhibited well distributed with an encapsulation efficiency of 80.27% and 85.5% for Cur and Art. The NioNPs had good release and degradation properties, and had no negative effect on the survival and proliferation ability of SW480 cells. Importantly, nanoformulation form of Cur and Art significantly displayed higher toxicity effect against SW480 cells. Furthermore, Cur-Art NioNPs increased Bax, Fas, and p53 gene expressions and suppressed Bcl2, Rb, and Cyclin D 1 gene expressions. In summary, these results display the niosome NPs as a first report of nano-combinational application of the natural herbal substances with a one-step fabricated co-delivery system for effective colorectal cancer.


Antineoplastic Agents , Artemisinins , Colonic Neoplasms , Curcumin , Nanoparticles , Humans , Curcumin/pharmacology , Liposomes , Colonic Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Artemisinins/pharmacology , Cell Line, Tumor , Drug Carriers
13.
Mol Biol Rep ; 50(4): 3023-3033, 2023 Apr.
Article En | MEDLINE | ID: mdl-36662452

AIM: Folate receptor expression increase up to 30% in breast cancer cells and could be used as a possible ligand to couple to folate-functionalized nanoparticles. Metformin (Met) is an anti-hyperglycemic agent whose anti-cancer properties have been formerly reported. Consequently, in the current study, we aimed to synthesize and characterize folate-functionalized PLGA-PEG NPs loaded with Met and evaluate the anti-cancer effect against the MDA-MB-231 human breast cancer cell line. METHODS: FA-PLGA-PEG NPs were synthesized by employing the W1/O/W2 technique and their physicochemical features were evaluated by FE-SEM, TEM, FTIR, and DLS methods. The cytotoxic effects of free and Nano-encapsulated drugs were analyzed by the MTT technique. Furthermore, RT-PCR technique was employed to assess the expression levels of apoptotic and anti-apoptotic genes. RESULT: MTT result indicated Met-loaded FA-PLGA-PEG NPs exhibited cytotoxic effects in a dose-dependently manner and had more cytotoxic effects relative to other groups. The remarkable down-regulation (hTERT and Bcl-2) and up-regulation (Caspase7, Caspase3, Bax, and p53) gene expression were shown in treated MDA-MB-231 cells with Met-loaded FA-PLGA-PEG NPs. CONCLUSION: Folate-Functionalized PLGA-PEG Nanoparticles are suggested as an appropriate approach to elevate the anticancer properties of Met for improving the treatment effectiveness of breast cancer cells.


Antineoplastic Agents , Breast Neoplasms , Metformin , Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Folic Acid/pharmacology , Metformin/therapeutic use , Polyethylene Glycols/chemistry , Antineoplastic Agents/therapeutic use , Drug Carriers/chemistry , Nanoparticles/chemistry
14.
Microb Pathog ; 176: 105995, 2023 Mar.
Article En | MEDLINE | ID: mdl-36681203

Despite the availability of an effective hepatitis B virus (HBV) vaccine and universal immunization schedules, HBV has remained a health problem in various stages such as occult hepatitis B infection (OBI), chronic hepatitis B (CHB), and hepatocellular carcinoma (HCC), which is considered one of the possible phases during chronic HBV infection. OBI is defined as the persistence of HBV genomes in hepatocytes of patients with a negative HBV surface antigen (HBsAg) test and detectable or undetectable HBV DNA in the blood. OBI is occasionally associated with infection caused by mutant viruses that produce a modified HBsAg that is undetected by diagnostic procedures or with replication-defective variations. Many aspects of HBV (OBI more than any other stage) including prevalence, pathobiology, and clinical implications has remained controversial. According to a growing body of research, non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been linked to the development and progression of a number of illnesses, including viral infectious disorders. Despite a shortage of knowledge regarding the expression and biological activities of lncRNAs and miRNAs in HBV infection, Hepatitis B remains a major global public health concern. This review summarizes the role of lncRNAs in the diagnosis and treatment of different stages of hepatitis B infection.


Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Hepatitis B Surface Antigens , Liver Neoplasms/pathology , DNA, Viral , Hepatitis B virus/genetics , Hepatitis B, Chronic/complications
15.
Curr Microbiol ; 80(1): 38, 2022 Dec 17.
Article En | MEDLINE | ID: mdl-36527519

Multiple sclerosis (MS) is a chronic inflammatory disease characterized by central nervous system (CNS) lesions that can lead to severe neurological defects. Evidence is mounting that immune function is crucial in neuroinflammatory illnesses like MS. Through its impact on systemic immunological reactions, the large microbial population known as the gut microbiota has been linked to both human health and disease. The gut-brain axis (GBA) therefore encompasses neurological, immunological, and hormonal pathways, and microbiota can have a number of effects on the immune system, influencing MS. Recent research revealed a bidirectional relationship between metabolites originating from the gut microbiota, namely short-chain fatty acids (SCFAs). Intestinal epithelial cells are influenced by SCFAs, which also boosts the secretion of -Defensins and regenerating islet-derived III (REGIII) proteins. These proteins reduce intestinal pathogens, induce T-reg differentiation, and modulate immune responses by reducing IL-1 and IL-6 expression and increasing IL-10. Nutrition and psychological stress are two of the most significant elements that can directly and indirectly change the microbiota compositions along with other environmental influencing factors. An important regulator of intestinal physiology in the gut-brain-microbiota axis is butyrate, a well-known SCFA. Intestinal dysbiosis, altered intestinal barrier function, behavioral abnormalities, and activation of the hypothalamic-pituitary-adrenal (HPA) axis are all brought on by exposure. Probiotics, bacterial metabolite supplementation, fecal matter transplantation, defined microbial communities, and dietary intervention are some methods for modifying the composition of the gut microbiota that may be used to affect disease-related immune dysfunction and serve as the foundation for a new class of therapeutics.


Gastrointestinal Microbiome , Microbiota , Multiple Sclerosis , Humans , Gastrointestinal Microbiome/physiology , Fatty Acids, Volatile , Gastrointestinal Tract , Central Nervous System
16.
Curr Microbiol ; 80(1): 15, 2022 Dec 02.
Article En | MEDLINE | ID: mdl-36459252

Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). Compared to other types of self-limiting myelin disorders, MS compartmentalizes and maintains chronic inflammation in the CNS. Even though the exact cause of MS is unclear, it is assumed that genetic and environmental factors play an important role in susceptibility to this disease. The progression of MS is triggered by certain environmental factors, such as viral infections. The most important viruses that affect MS are Epstein-Barr virus (EBV), human herpes virus 6 (HHV-6), human endogenous retrovirus (HERV), cytomegalovirus (CMV), and varicella zoster virus (VZV). These viruses all have latent stages that allow them to escape immune detection and reactivate after exposure to various stimuli. Furthermore, their tropism for CNS and immune system cells explains their possible deleterious function in neuroinflammation. In this study, the effect of viral infections on MS disease focuses on the details of viruses that can change the risk of the disease. Paying attention to the most recent articles on the role of SARS-CoV-2 in MS disease, laboratory indicators show the interaction of the immune system with the virus. Also, strategies to prevent viruses that play a role in triggering MS are discussed, such as EBV, which is one of the most important.


COVID-19 , Epstein-Barr Virus Infections , Multiple Sclerosis , Virus Diseases , Humans , Multiple Sclerosis/etiology , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human , SARS-CoV-2 , Virus Diseases/complications
17.
J Nanobiotechnology ; 20(1): 440, 2022 Oct 08.
Article En | MEDLINE | ID: mdl-36209089

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to COVID-19 and has become a pandemic worldwide with mortality of millions. Nanotechnology can be used to deliver antiviral medicines or other types of viral reproduction-inhibiting medications. At various steps of viral infection, nanotechnology could suggest practical solutions for usage in the fight against viral infection. Nanotechnology-based approaches can help in the fight against SARS-CoV-2 infection. Nanoparticles can play an essential role in progressing SARS-CoV-2 treatment and vaccine production in efficacy and safety. Nanocarriers have increased the speed of vaccine development and the efficiency of vaccines. As a result, the increased investigation into nanoparticles as nano-delivery systems and nanotherapeutics in viral infection, and the development of new and effective methods are essential for inhibiting SARS-CoV-2 infection. In this article, we compare the attributes of several nanoparticles and evaluate their capability to create novel vaccines and treatment methods against different types of viral diseases, especially the SARS-CoV-2 disease.


COVID-19 Drug Treatment , Nanoparticles , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Nanoparticles/therapeutic use , Pandemics/prevention & control , SARS-CoV-2
18.
Appl Biochem Biotechnol ; 194(10): 4930-4945, 2022 Oct.
Article En | MEDLINE | ID: mdl-35674922

The most prevalent malignancy among women is breast cancer. Phytochemicals and their derivatives are rapidly being recognized as possible cancer complementary therapies because they can modify signaling pathways that lead to cell cycle control or directly alter cell cycle regulatory molecules. The phytochemicals' poor bioavailability and short half-life make them unsuitable as anticancer drugs. Applying PLGA-PEG NPs improves their solubility and tolerance while also reducing drug adverse effects. According to the findings, combining anti-tumor phytochemicals can be more effective in regulating several signaling pathways linked to tumor cell development. The point of the study was to compare the anti-proliferative impacts of combined artemisinin and metformin on cell cycle arrest and expression of cyclin D1 and apoptotic genes (bcl-2, Bax, survivin, caspase-7, and caspase-3), and also hTERT genes in breast cancer cells. T-47D breast cancer cells were treated with different concentrations of metformin (MET) and artemisinin (ART) co-loaded in PLGA-PEG NPs and free form. The MTT test was applied to assess drug cytotoxicity in T47D cells. The cell cycle distribution was investigated using flow cytometry and the expression levels of cyclin D1, hTERT, Bax, bcl-2, caspase-3, and caspase-7, and survivin genes were then determined using real-time PCR. The findings of the MTT test and flow cytometry revealed that each state was cytotoxic to T47D cells in a time and dose-dependent pattern. Compared to various state of drugs (free and nano state, pure and combination state) Met-Art-PLGA/PEG NPs demonstrated the strongest anti-proliferative impact and considerably inhibited the development of T-47D cells; also, treatment with nano-formulated forms of Met-Art combination resulted in substantial downregulation of hTERT, Bcl-2, cyclin D1, survivin, and upregulation of caspase-3, caspase-7, and Bax, in the cells, as compared to the free forms, as indicated by real-time PCR findings. The findings suggested that combining an ART/MET-loaded PLGA-PEG NP-based therapy for breast cancer could significantly improve treatment effectiveness.


Alkylmercury Compounds , Antineoplastic Agents , Artemisinins , Breast Neoplasms , Carbanilides , Ethylmercury Compounds , Heterocyclic Compounds , Metformin , Nanoparticles , Trimethyltin Compounds , Antineoplastic Agents/chemistry , Apoptosis , Artemisinins/pharmacology , Artemisinins/therapeutic use , Benzalkonium Compounds/pharmacology , Benzalkonium Compounds/therapeutic use , Benzoflavones/pharmacology , Benzoflavones/therapeutic use , Breast Neoplasms/metabolism , Carbanilides/pharmacology , Carbanilides/therapeutic use , Caspase 3/genetics , Caspase 7 , Cell Line, Tumor , Cell Proliferation , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin D1/pharmacology , Ethylmercury Compounds/pharmacology , Ethylmercury Compounds/therapeutic use , Female , Heterocyclic Compounds/pharmacology , Humans , Metformin/pharmacology , Metformin/therapeutic use , Methacholine Compounds , Nanoparticles/chemistry , Oximes/pharmacology , Oximes/therapeutic use , Plasmalogens/pharmacology , Plasmalogens/therapeutic use , Sulfonylurea Compounds/pharmacology , Sulfonylurea Compounds/therapeutic use , Survivin/pharmacology , Survivin/therapeutic use , Trimethyltin Compounds/pharmacology , bcl-2-Associated X Protein
19.
Cell Commun Signal ; 20(1): 100, 2022 06 30.
Article En | MEDLINE | ID: mdl-35773670

NF-E2-related factor 2 (Nrf2) protein is a basic-region leucine zipper transcription factor that defends against endogenous or exogenous stressors. By inducing several cytoprotective and detoxifying gene expressions, Nrf2 can increase the sensitivity of the cells to oxidants and electrophiles. Transient Nrf2 activation, by its specific activators, has protective roles against carcinogenesis and cancer development. However, permanent activation of Nrf2 promotes various cancer properties, comprising malignant progression, chemo/radio resistance, and poor patient prognosis. Taken together, these findings suggest that reaching an optimal balance between paradoxical functions of Nrf2 in malignancy may render a selective improvement to identify therapeutic strategies in cancer treatment. In this review, we describe lately discovered Nrf2 inducers and inhibitors, and their chemopreventive and/or anticancer activities.


NF-E2-Related Factor 2 , Neoplasms , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/prevention & control
20.
Asian Pac J Cancer Prev ; 23(6): 1951-1957, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35763636

BACKGROUND AND PURPOSE: Rutin (RUT) is one of the phenolic compounds found in the invasive plant species, Carpobrotus edulis. Several studies have confirmed numerous pharmacological properties of RUT, including antioxidant, antidiabetic, anti-inflammatory, antimicrobial and anticancer activities. As a result, the goal of this work was to make RUT-loaded PCL-PEG and test its anti-cancer effects against the Skov3 human ovarian cancer cell line. MATERIALS AND METHODS: The NPs were made using the W1/O/W2 process, and their physicochemical properties were assessed by FE-SEM, FTIR, and DLS. MTT assay were used to investigate the anti-proliferative characteristics of drug-loaded NPs. Real-time PCR was also utilized to  examine the expression levels of apoptotic genes including caspase-8, -9, -3, and Bax, as well as anti-apoptotic genes like Bcl-2. RESULTS: Cytotoxicity testing revealed that RUT-loaded PCL-PEG improved cytotoxicity in a dose- and time-dependent manner. In treated MDA-MB-231 cells with RUT-loaded PCL-PEG, there was a significant up-regulation of caspase-8, -9, -3, and Bax genes compared to treated cells with free RUT. CONCLUSION: Finally, RUT-loaded PCL-PEG NPs are recommended as ideal delivery nanocarriers for enhancing RUT's anticancer characteristics for ovarian cancer treatment.


Antineoplastic Agents , Nanoparticles , Ovarian Neoplasms , Rutin , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Caspase 8/metabolism , Drug Carriers/chemistry , Female , Humans , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Ovarian Neoplasms/drug therapy , Polyesters/administration & dosage , Polyesters/chemistry , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Rutin/administration & dosage , Rutin/chemistry , Rutin/pharmacology , bcl-2-Associated X Protein/metabolism
...