Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 33: 713-732, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37662967

RESUMEN

Mitochondrial anti-viral signaling protein (MAVS) plays an important role in host defense against viral infection via coordinating the activation of NF-κB and interferon regulatory factors. The mitochondrial-bound form of MAVS is essential for its anti-viral innate immunity. Recently, tumor cells were proposed to mimic a viral infection by activating RNA-sensing pattern recognition receptors. Here, we demonstrate that MAVS is overexpressed in a panel of viral non-infected cancer cell lines and patient-derived tumors, including lung, liver, bladder, and cervical cancers, and we studied its role in cancer. Silencing MAVS expression reduced cell proliferation and the expression and nuclear translocation of proteins associated with transcriptional regulation, inflammation, and immunity. MAVS depletion reduced expression of the inflammasome components and inhibited its activation/assembly. Moreover, MAVS directly interacts with the mitochondrial protein VDAC1, decreasing its conductance, and we identified the VDAC1 binding site in MAVS. Our findings suggest that MAVS depletion, by reducing cancer cell proliferation and inflammation, represents a new target for cancer therapy.

2.
Microbiol Spectr ; 10(2): e0263821, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35234494

RESUMEN

Beneficial microorganisms need to overcome the plant defense system to establish on or within plant tissues. Like pathogens, beneficial microbes can manipulate a plant's immunity pathways, first by suppressing and hiding to establish on the host and then by inducing resistance to protect the plant. In the current study, we demonstrated that although Pseudozyma aphidis can activate microbe-associated molecular pattern (MAMP)-associated genes, it does not activate MAMP-triggered callose deposition and can, moreover, suppress such deposition triggered by Flg22 or chitin. While MAMP-associated gene activation by P. aphidis was not dependent on salicylic acid, jasmonic acid, or ethylene signaling, suppression of MAMP-triggered callose deposition required the salicylic acid and jasmonic acid signaling factors JAR1-1 and E3 ubiquitin ligase COI1 yet did not rely on EIN2, NPR1, or the transcription factor JIN1/MYC2. We also demonstrated the ability of P. aphidis, known to be an epiphytic yeast-like organism, to penetrate the stomata and establish within plant tissues, as do endophytes. These results thus demonstrate the potential of P. aphidis to suppress MAMP-elicited defenses in order to establish on and within host plant tissues. IMPORTANCE Our study demonstrates the ability of P. aphidis to penetrate into plant tissues, where it avoids and overcomes plant defense systems in order to establish and subsequently protect the plant.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Basidiomycota , Glucanos , Enfermedades de las Plantas , Hojas de la Planta/metabolismo , Ácido Salicílico/metabolismo
3.
Nat Commun ; 10(1): 2886, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253809

RESUMEN

Glucosinolates accumulate mainly in cruciferous plants and their hydrolysis-derived products play important roles in plant resistance against pathogens. The pathogen Botrytis cinerea has variable sensitivity to glucosinolates, but the mechanisms by which it responds to them are mostly unknown. Exposure of B. cinerea to glucosinolate-breakdown products induces expression of the Major Facilitator Superfamily transporter, mfsG, which functions in fungitoxic compound efflux. Inoculation of B. cinerea on wild-type Arabidopsis thaliana plants induces mfsG expression to higher levels than on glucosinolate-deficient A. thaliana mutants. A B. cinerea strain lacking functional mfsG transporter is deficient in efflux ability. It accumulates more isothiocyanates (ITCs) and is therefore more sensitive to this compound in vitro; it is also less virulent to glucosinolates-containing plants. Moreover, mfsG mediates ITC efflux in Saccharomyces cerevisiae cells, thereby conferring tolerance to ITCs in the yeast. These findings suggest that mfsG transporter is a virulence factor that increases tolerance to glucosinolates.


Asunto(s)
Arabidopsis/microbiología , Botrytis/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Glucosinolatos/química , ADN Complementario , ADN de Hongos , Eliminación de Gen , Mutación , Enfermedades de las Plantas/microbiología , ARN de Hongos , Saccharomyces cerevisiae/metabolismo
4.
Front Plant Sci ; 6: 132, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25814995

RESUMEN

Epiphytic yeasts, which colonize plant surfaces, may possess activity that can be harnessed to help plants defend themselves against various pathogens. Due to their unique characteristics, epiphytic yeasts belonging to the genus Pseudozyma hold great potential for use as biocontrol agents. We identified a unique, biologically active isolate of the epiphytic yeast Pseudozyma aphidis that is capable of inhibiting Botrytis cinerea via a dual mode of action, namely induced resistance and antibiosis. Here, we show that strain L12 of P. aphidis can reduce the severity of powdery mildew caused by Podosphaera xanthii on cucumber plants with an efficacy of 75%. Confocal and scanning electron microscopy analyses demonstrated P. aphidis proliferation on infected tissue and its production of long hyphae that parasitize the powdery mildew hyphae and spores as an ectoparasite. We also show that crude extract of P. aphidis metabolites can inhibit P. xanthii spore germination in planta. Our results suggest that in addition to its antibiosis as mode of action, P. aphidis may also act as an ectoparasite on P. xanthii. These results indicate that P. aphidis strain L12 has the potential to control powdery mildew.

5.
Virology ; 428(2): 98-111, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22520941

RESUMEN

Hepatitis C virus is a leading cause of chronic hepatitis and liver cancer. Little information exists on the interplay between innate defense mechanisms and viral antagonists that promote viral egress. Herein, the effects of Tetherin/BST-2 on HCV release were investigated. In Huh-7.5 hepatocytes, low expression levels of BST-2 were detected. Treatment of Huh-7.5 cells with IFNα, elevated BST-2 expression levels. However, HCV could not alter the expression of IFNα-induced BST-2, nor of stably over-expressed BST-2. Significantly, over expressed BST-2 moderately blocked HCV production and release from Huh-7.5 cells. Functional analysis of BST-2, confirmed its ability to inhibit the release of HIV delta-Vpu from Huh-7.5-BST-2 cells. HIV-Vpu antagonized BST-2 activity and rescued HIV delta-Vpu release from Huh-7.5-BST-2 cells. However, vpu slightly rescued HCV release and production from Huh-7.5-BST-2. We conclude that BST-2 moderately restricts HCV production and release from Huh-7.5 hepatocytes, while the virus lacks mechanisms to counteract this restriction.


Asunto(s)
Antígenos CD/metabolismo , Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepatitis C/virología , Interferón-alfa/metabolismo , Liberación del Virus , Antígenos CD/genética , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Hepacivirus/genética , Hepatitis C/genética , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos
6.
J Virol ; 83(11): 5495-504, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19297498

RESUMEN

Measles virus remains a substantial cause of morbidity and mortality, producing acute infection with a potential for development of viral persistence. To study the events underlying acute and persistent measles virus infection, we performed a global transcriptional analysis on murine neuroblastoma cells that were acutely or persistently infected with measles virus. In general, we found that acute infection induced significantly more gene expression changes than did persistent infection. A functional enrichment analysis to identify which host pathways were perturbed during each of these infections identified several pathways related to cholesterol biosynthesis, including cholesterol metabolic processes, hydroxymethylglutaryl-coenzyme A (CoA) reductase activity, and acetyl-CoA C-acetyltransferase activity. We also found that measles virus colocalized to lipid rafts in both acute and persistent infection models and that the majority of genes associated with cholesterol synthesis were downregulated in persistent infection relative to acute infection, suggesting a possible link with the defective viral budding in persistent infection. Further, we found that pharmacological inhibition of cholesterol synthesis resulted in the inhibition of viral budding during acute infection. In summary, persistent measles viral infection was associated with decreased cholesterol synthesis, a lower abundance of cholesterol and lipid rafts in the cell membrane, and inhibition of giant-cell formation and release of viral progeny.


Asunto(s)
Colesterol/biosíntesis , Virus del Sarampión/fisiología , Neuroblastoma/metabolismo , Neuroblastoma/virología , Enfermedad Aguda , Animales , Línea Celular Tumoral , Regulación de la Expresión Génica , Hidroximetilglutaril-CoA Reductasas/metabolismo , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Simvastatina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA