Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Proc Natl Acad Sci U S A ; 121(14): e2314918121, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38527192

Subcallosal cingulate (SCC) deep brain stimulation (DBS) is an emerging therapy for refractory depression. Good clinical outcomes are associated with the activation of white matter adjacent to the SCC. This activation produces a signature cortical evoked potential (EP), but it is unclear which of the many pathways in the vicinity of SCC is responsible for driving this response. Individualized biophysical models were built to achieve selective engagement of two target bundles: either the forceps minor (FM) or cingulum bundle (CB). Unilateral 2 Hz stimulation was performed in seven patients with treatment-resistant depression who responded to SCC DBS, and EPs were recorded using 256-sensor scalp electroencephalography. Two distinct EPs were observed: a 120 ms symmetric response spanning both hemispheres and a 60 ms asymmetrical EP. Activation of FM correlated with the symmetrical EPs, while activation of CB was correlated with the asymmetrical EPs. These results support prior model predictions that these two pathways are predominantly activated by clinical SCC DBS and provide first evidence of a link between cortical EPs and selective fiber bundle activation.


Deep Brain Stimulation , White Matter , Humans , Deep Brain Stimulation/methods , Gyrus Cinguli/physiology , Corpus Callosum , Evoked Potentials
2.
bioRxiv ; 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38187733

Background: A critical advance in depression research is to clarify the hypothesized role of interoceptive processing in neural mechanisms of treatment efficacy. This study tests whether cortical interoceptive processing, as indexed by the heartbeat-evoked potential (HEP), is modulated by deep brain stimulation (DBS) to the subcallosal cingulate (SCC) for treatment resistant depression (TRD). Methods: Eight patients with TRD were enrolled in a study of SCC DBS safety and efficacy. Electroencephalography (EEG) and symptom severity measures were sampled in a laboratory setting over the course of a six-month treatment protocol. The primary outcome measure was an EEG-derived HEP, which reflects cortical processing of heartbeat sensation. Cluster-based permutation analyses were used to test the effect of stimulation and time in treatment on the HEP. The change in signal magnitude after treatment was correlated with change in depression severity as measured by the 17-item Hamilton Depression Rating Scale. Results: HEP amplitude was greater after 24 weeks of treatment ( t (7)=-4.40, p =.003, g= -1.38, 95% Cl [-2.3, -0.42]), and this change was inversely correlated with latency of treatment response (rho = -0.75, 95% Cl [-0.95, -0.11], p= .03). An acute effect of DBS was also observed, but as a decrease in HEP amplitude ( t (6) =6.66, p <.001, g= 2.19, 95% Cl [0.81, 3.54]). HEP differences were most pronounced over left posterior sensors from 405-425 ms post-stimulus. Conclusion: Brain-based evidence substantiates a theorized link between interoception and depression, and suggests an interoceptive contribution to the mechanism of treatment efficacy with deep brain stimulation for severe depression.

...