Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Chem ; 111: 108110, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815500

RESUMEN

The recent advances in artificial intelligence modern approaches can play vital roles in the Internet of Medical Things (IoMT). Automatic diagnosis is one of the most important topics in the IoMT, including cancer diagnosis. Breast cancer is one of the top causes of death among women. Accurate diagnosis and early detection of breast cancer can improve the survival rate of patients. Deep learning models have demonstrated outstanding potential in accurately detecting and diagnosing breast cancer. This paper proposes a novel technology for breast cancer detection using CrossViT as the deep learning model and an enhanced version of the Growth Optimizer algorithm (MGO) as the feature selection method. CrossVit is a hybrid deep learning model that combines the strengths of both convolutional neural networks (CNNs) and transformers. The MGO is a meta-heuristic algorithm that selects the most relevant features from a large pool of features to enhance the performance of the model. The developed approach was evaluated on three publicly available breast cancer datasets and achieved competitive performance compared to other state-of-the-art methods. The results show that the combination of CrossViT and the MGO can effectively identify the most informative features for breast cancer detection, potentially assisting clinicians in making accurate diagnoses and improving patient outcomes. The MGO algorithm improves accuracy by approximately 1.59% on INbreast, 5.00% on MIAS, and 0.79% on MiniDDSM compared to other methods on each respective dataset. The developed approach can also be utilized to improve the Quality of Service (QoS) in the healthcare system as a deployable IoT-based intelligent solution or a decision-making assistance service, enhancing the efficiency and precision of the diagnosis.


Asunto(s)
Algoritmos , Neoplasias de la Mama , Humanos , Neoplasias de la Mama/diagnóstico , Femenino , Aprendizaje Profundo , Redes Neurales de la Computación , Internet de las Cosas
2.
Comput Biol Med ; 163: 107154, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37364532

RESUMEN

Accurate skin lesion diagnosis is critical for the early detection of melanoma. However, the existing approaches are unable to attain substantial levels of accuracy. Recently, pre-trained Deep Learning (DL) models have been applied to tackle and improve efficiency on tasks such as skin cancer detection instead of training models from scratch. Therefore, we develop a robust model for skin cancer detection with a DL-based model as a feature extraction backbone, which is achieved using MobileNetV3 architecture. In addition, a novel algorithm called the Improved Artificial Rabbits Optimizer (IARO) is introduced, which uses the Gaussian mutation and crossover operator to ignore the unimportant features from those features extracted using MobileNetV3. The PH2, ISIC-2016, and HAM10000 datasets are used to validate the developed approach's efficiency. The empirical results show that the developed approach yields outstanding accuracy results of 87.17% on the ISIC-2016 dataset, 96.79% on the PH2 dataset, and 88.71 % on the HAM10000 dataset. Experiments show that the IARO can significantly improve the prediction of skin cancer.


Asunto(s)
Melanoma , Enfermedades de la Piel , Neoplasias Cutáneas , Animales , Conejos , Dermoscopía/métodos , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Melanoma/diagnóstico , Melanoma/genética , Melanoma/patología , Algoritmos
3.
Diagnostics (Basel) ; 13(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37174970

RESUMEN

Recently, pre-trained deep learning (DL) models have been employed to tackle and enhance the performance on many tasks such as skin cancer detection instead of training models from scratch. However, the existing systems are unable to attain substantial levels of accuracy. Therefore, we propose, in this paper, a robust skin cancer detection framework for to improve the accuracy by extracting and learning relevant image representations using a MobileNetV3 architecture. Thereafter, the extracted features are used as input to a modified Hunger Games Search (HGS) based on Particle Swarm Optimization (PSO) and Dynamic-Opposite Learning (DOLHGS). This modification is used as a novel feature selection to alloacte the most relevant feature to maximize the model's performance. For evaluation of the efficiency of the developed DOLHGS, the ISIC-2016 dataset and the PH2 dataset were employed, including two and three categories, respectively. The proposed model has accuracy 88.19% on the ISIC-2016 dataset and 96.43% on PH2. Based on the experimental results, the proposed approach showed more accurate and efficient performance in skin cancer detection than other well-known and popular algorithms in terms of classification accuracy and optimized features.

4.
Sensors (Basel) ; 23(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37177634

RESUMEN

Intrusion detection systems (IDS) play a crucial role in securing networks and identifying malicious activity. This is a critical problem in cyber security. In recent years, metaheuristic optimization algorithms and deep learning techniques have been applied to IDS to improve their accuracy and efficiency. Generally, optimization algorithms can be used to boost the performance of IDS models. Deep learning methods, such as convolutional neural networks, have also been used to improve the ability of IDS to detect and classify intrusions. In this paper, we propose a new IDS model based on the combination of deep learning and optimization methods. First, a feature extraction method based on CNNs is developed. Then, a new feature selection method is used based on a modified version of Growth Optimizer (GO), called MGO. We use the Whale Optimization Algorithm (WOA) to boost the search process of the GO. Extensive evaluation and comparisons have been conducted to assess the quality of the suggested method using public datasets of cloud and Internet of Things (IoT) environments. The applied techniques have shown promising results in identifying previously unknown attacks with high accuracy rates. The MGO performed better than several previous methods in all experimental comparisons.

5.
Diagnostics (Basel) ; 13(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36899978

RESUMEN

As day-to-day-generated data become massive in the 6G-enabled Internet of medical things (IoMT), the process of medical diagnosis becomes critical in the healthcare system. This paper presents a framework incorporated into the 6G-enabled IoMT to improve prediction accuracy and provide a real-time medical diagnosis. The proposed framework integrates deep learning and optimization techniques to render accurate and precise results. The medical computed tomography images are preprocessed and fed into an efficient neural network designed for learning image representations and converting each image to a feature vector. The extracted features from each image are then learned using a MobileNetV3 architecture. Furthermore, we enhanced the performance of the arithmetic optimization algorithm (AOA) based on the hunger games search (HGS). In the developed method, named AOAHG, the operators of the HGS are applied to enhance the AOA's exploitation ability while allocating the feasible region. The developed AOAG selects the most relevant features and ensures the overall model classification improvement. To assess the validity of our framework, we conducted evaluation experiments on four datasets, including ISIC-2016 and PH2 for skin cancer detection, white blood cell (WBC) detection, and optical coherence tomography (OCT) classification, using different evaluation metrics. The framework showed remarkable performance compared to currently existing methods in the literature. In addition, the developed AOAHG provided results better than other FS approaches according to the obtained accuracy, precision, recall, and F1-score as performance measures. For example, AOAHG had 87.30%, 96.40%, 88.60%, and 99.69% for the ISIC, PH2, WBC, and OCT datasets, respectively.

6.
Environ Sci Pollut Res Int ; 30(12): 33780-33794, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36495438

RESUMEN

A sustainable environment by decreasing fossil fuel utilization and anthropogenic greenhouse gases is a globally main goal due to climate change and serious air pollution. Carbon dioxide (CO2) is a heat-trapping (greenhouse) that is released into the earth's atmosphere from natural processes, such as volcanic respiration and eruptions, as well as human activities, such as burning fossil fuels and deforestation. Due to this fact, underground carbon storage (UCS) is a promising technology to cut carbon emissions. However, there are some barriers to prevent UCS from applying globally. One of them is evaluating the feasibility of storage projects. Thus, the prediction accuracy of CO2 storage efficiencies may promote the attention of the community for UCS. In this study, we utilize the recent advances of swarm intelligence to develop a hybrid algorithm called AOSMA, employed to train the long short-term memory (LSTM). The developed swarm intelligence method (AOSMA) is an enhanced Aquila optimizer (AO) using the search mechanism of the slime mould algorithm (SMA). It is used to boost the prediction capability of the LSTM by optimizing its parameters. We considered two CO2 trapping indices, called residual trapping index (RTI) and solubility trapping index (STI). The evaluation experiments have shown that the AOSMA achieved significant results compared to the original AO and SMA and several swarm intelligence and optimization algorithms. The developed smart tools could use as a game changer to provide fast and accurate storage efficiency for projects that have similar parameters falling within the range of the database.


Asunto(s)
Contaminación del Aire , Agua Subterránea , Humanos , Dióxido de Carbono/análisis , Memoria a Corto Plazo , Contaminación del Aire/prevención & control , Combustibles Fósiles
7.
Biosensors (Basel) ; 12(10)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36290958

RESUMEN

In this paper, we study the applications of metaheuristics (MH) optimization algorithms in human activity recognition (HAR) and fall detection based on sensor data. It is known that MH algorithms have been utilized in complex engineering and optimization problems, including feature selection (FS). Thus, in this regard, this paper used nine MH algorithms as FS methods to boost the classification accuracy of the HAR and fall detection applications. The applied MH were the Aquila optimizer (AO), arithmetic optimization algorithm (AOA), marine predators algorithm (MPA), artificial bee colony (ABC) algorithm, genetic algorithm (GA), slime mold algorithm (SMA), grey wolf optimizer (GWO), whale optimization algorithm (WOA), and particle swarm optimization algorithm (PSO). First, we applied efficient prepossessing and segmentation methods to reveal the motion patterns and reduce the time complexities. Second, we developed a light feature extraction technique using advanced deep learning approaches. The developed model was ResRNN and was composed of several building blocks from deep learning networks including convolution neural networks (CNN), residual networks, and bidirectional recurrent neural networks (BiRNN). Third, we applied the mentioned MH algorithms to select the optimal features and boost classification accuracy. Finally, the support vector machine and random forest classifiers were employed to classify each activity in the case of multi-classification and to detect fall and non-fall actions in the case of binary classification. We used seven different and complex datasets for the multi-classification case: the PAMMP2, Sis-Fall, UniMiB SHAR, OPPORTUNITY, WISDM, UCI-HAR, and KU-HAR datasets. In addition, we used the Sis-Fall dataset for the binary classification (fall detection). We compared the results of the nine MH optimization methods using different performance indicators. We concluded that MH optimization algorithms had promising performance in HAR and fall detection applications.


Asunto(s)
Accidentes por Caídas , Dispositivos Electrónicos Vestibles , Humanos , Redes Neurales de la Computación , Algoritmos , Actividades Humanas
8.
Comput Intell Neurosci ; 2022: 9112634, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875781

RESUMEN

The Internet of Medical Things (IoMT) has dramatically benefited medical professionals that patients and physicians can access from all regions. Although the automatic detection and prediction of diseases such as melanoma and leukemia is still being investigated and studied in IoMT, existing approaches are not able to achieve a high degree of efficiency. Thus, with a new approach that provides better results, patients would access the adequate treatments earlier and the death rate would be reduced. Therefore, this paper introduces an IoMT proposal for medical images' classification that may be used anywhere, i.e., it is an ubiquitous approach. It was designed in two stages: first, we employ a transfer learning (TL)-based method for feature extraction, which is carried out using MobileNetV3; second, we use the chaos game optimization (CGO) for feature selection, with the aim of excluding unnecessary features and improving the performance, which is key in IoMT. Our methodology was evaluated using ISIC-2016, PH2, and Blood-Cell datasets. The experimental results indicated that the proposed approach obtained an accuracy of 88.39% on ISIC-2016, 97.52% on PH2, and 88.79% on Blood-cell datsets. Moreover, our approach had successful performances for the metrics employed compared to other existing methods.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Algoritmos , Humanos , Internet , Aprendizaje Automático , Neoplasias Cutáneas/diagnóstico
9.
Comput Intell Neurosci ; 2022: 5830766, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35676950

RESUMEN

Recently, the 6G-enabled Internet of Medical Things (IoMT) has played a key role in the development of functional health systems due to the massive data generated daily from the hospitals. Therefore, the automatic detection and prediction of future risks such as pneumonia and retinal diseases are still under research and study. However, traditional approaches did not yield good results for accurate diagnosis. In this paper, a robust 6G-enabled IoMT framework is proposed for medical image classification with an ensemble learning (EL)-based model. EL is achieved using MobileNet and DenseNet architecture as a feature extraction backbone. In addition, the developed framework uses a modified honey badger algorithm (HBA) based on Levy flight (LFHBA) as a feature selection method that aims to remove the irrelevant features from those extracted features using the EL model. For evaluation of the performance of the proposed framework, the chest X-ray (CXR) dataset and the optical coherence tomography (OCT) dataset were employed. The accuracy of our technique was 87.10% on the CXR dataset and 94.32% on OCT dataset-both very good results. Compared to other current methods, the proposed method is more accurate and efficient than other well-known and popular algorithms.


Asunto(s)
Miel , Internet de las Cosas , Mustelidae , Algoritmos , Animales , Aprendizaje Automático
10.
Healthcare (Basel) ; 10(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35742136

RESUMEN

Nowadays, the emerging information technologies in smart handheld devices are motivating the research community to make use of embedded sensors in such devices for healthcare purposes. In particular, inertial measurement sensors such as accelerometers and gyroscopes embedded in smartphones and smartwatches can provide sensory data fusion for human activities and gestures. Thus, the concepts of the Internet of Healthcare Things (IoHT) paradigm can be applied to handle such sensory data and maximize the benefits of collecting and analyzing them. The application areas contain but are not restricted to the rehabilitation of elderly people, fall detection, smoking control, sportive exercises, and monitoring of daily life activities. In this work, a public dataset collected using two smartphones (in pocket and wrist positions) is considered for IoHT applications. Three-dimensional inertia signals of thirteen timestamped human activities such as Walking, Walking Upstairs, Walking Downstairs, Writing, Smoking, and others are registered. Here, an efficient human activity recognition (HAR) model is presented based on efficient handcrafted features and Random Forest as a classifier. Simulation results ensure the superiority of the applied model over others introduced in the literature for the same dataset. Moreover, different approaches to evaluating such models are considered, as well as implementation issues. The accuracy of the current model reaches 98.7% on average. The current model performance is also verified using the WISDM v1 dataset.

11.
Comput Intell Neurosci ; 2022: 6473507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37332528

RESUMEN

This study proposes a novel framework to improve intrusion detection system (IDS) performance based on the data collected from the Internet of things (IoT) environments. The developed framework relies on deep learning and metaheuristic (MH) optimization algorithms to perform feature extraction and selection. A simple yet effective convolutional neural network (CNN) is implemented as the core feature extractor of the framework to learn better and more relevant representations of the input data in a lower-dimensional space. A new feature selection mechanism is proposed based on a recently developed MH method, called Reptile Search Algorithm (RSA), which is inspired by the hunting behaviors of the crocodiles. The RSA boosts the IDS system performance by selecting only the most important features (an optimal subset of features) from the extracted features using the CNN model. Several datasets, including KDDCup-99, NSL-KDD, CICIDS-2017, and BoT-IoT, were used to assess the IDS system performance. The proposed framework achieved competitive performance in classification metrics compared to other well-known optimization methods applied for feature selection problems.


Asunto(s)
Aprendizaje Profundo , Internet de las Cosas , Animales , Reptiles , Algoritmos , Redes Neurales de la Computación
12.
Entropy (Basel) ; 23(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34828081

RESUMEN

Currently, the world is still facing a COVID-19 (coronavirus disease 2019) classified as a highly infectious disease due to its rapid spreading. The shortage of X-ray machines may lead to critical situations and delay the diagnosis results, increasing the number of deaths. Therefore, the exploitation of deep learning (DL) and optimization algorithms can be advantageous in early diagnosis and COVID-19 detection. In this paper, we propose a framework for COVID-19 images classification using hybridization of DL and swarm-based algorithms. The MobileNetV3 is used as a backbone feature extraction to learn and extract relevant image representations as a DL model. As a swarm-based algorithm, the Aquila Optimizer (Aqu) is used as a feature selector to reduce the dimensionality of the image representations and improve the classification accuracy using only the most essential selected features. To validate the proposed framework, two datasets with X-ray and CT COVID-19 images are used. The obtained results from the experiments show a good performance of the proposed framework in terms of classification accuracy and dimensionality reduction during the feature extraction and selection phases. The Aqu feature selection algorithm achieves accuracy better than other methods in terms of performance metrics.

13.
Entropy (Basel) ; 23(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34441205

RESUMEN

Human activity recognition (HAR) plays a vital role in different real-world applications such as in tracking elderly activities for elderly care services, in assisted living environments, smart home interactions, healthcare monitoring applications, electronic games, and various human-computer interaction (HCI) applications, and is an essential part of the Internet of Healthcare Things (IoHT) services. However, the high dimensionality of the collected data from these applications has the largest influence on the quality of the HAR model. Therefore, in this paper, we propose an efficient HAR system using a lightweight feature selection (FS) method to enhance the HAR classification process. The developed FS method, called GBOGWO, aims to improve the performance of the Gradient-based optimizer (GBO) algorithm by using the operators of the grey wolf optimizer (GWO). First, GBOGWO is used to select the appropriate features; then, the support vector machine (SVM) is used to classify the activities. To assess the performance of GBOGWO, extensive experiments using well-known UCI-HAR and WISDM datasets were conducted. Overall outcomes show that GBOGWO improved the classification accuracy with an average accuracy of 98%.

14.
Sensors (Basel) ; 22(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35009682

RESUMEN

Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very necessary to provide sustainable computing for the the Internet of Things (IoT). Machine learning techniques play a vital role in the cybersecurity of the IoT for intrusion detection and malicious identification. Thus, in this study, we develop new feature extraction and selection methods and for the IDS system using the advantages of the swarm intelligence (SI) algorithms. We design a feature extraction mechanism depending on the conventional neural networks (CNN). After that, we present an alternative feature selection (FS) approach using the recently developed SI algorithm, Aquila optimizer (AQU). Moreover, to assess the quality of the developed IDS approach, four well-known public datasets, CIC2017, NSL-KDD, BoT-IoT, and KDD99, were used. We also considered extensive comparisons to other optimization methods to verify the competitive performance of the developed method. The results show the high performance of the developed approach using different evaluation indicators.


Asunto(s)
Aprendizaje Profundo , Águilas , Internet de las Cosas , Animales , Seguridad Computacional , Redes Neurales de la Computación
15.
Comput Intell Neurosci ; 2019: 2537689, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30936911

RESUMEN

In recent years, convolutional neural network (CNN) has attracted considerable attention since its impressive performance in various applications, such as Arabic sentence classification. However, building a powerful CNN for Arabic sentiment classification can be highly complicated and time consuming. In this paper, we address this problem by combining differential evolution (DE) algorithm and CNN, where DE algorithm is used to automatically search the optimal configuration including CNN architecture and network parameters. In order to achieve the goal, five CNN parameters are searched by the DE algorithm which include convolution filter sizes that control the CNN architecture, number of filters per convolution filter size (NFCS), number of neurons in fully connected (FC) layer, initialization mode, and dropout rate. In addition, the effect of the mutation and crossover operators in DE algorithm were investigated. The performance of the proposed framework DE-CNN is evaluated on five Arabic sentiment datasets. Experiments' results show that DE-CNN has higher accuracy and is less time consuming than the state-of-the-art algorithms.


Asunto(s)
Algoritmos , Simulación por Computador , Lenguaje , Redes Neurales de la Computación , Humanos , Neuronas/fisiología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA