Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(16): 46697-46710, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36723838

RESUMEN

This study presents a novel perspective on the control of eutrophication by moving aeration through a ten-month pilot field study. Moving aeration significantly reduced the relative abundance of class Cyanobacteria by 14.01%, effectively preventing cyanobacteria from predominating in the overlying water. As a result, the deposition of TOC, N, and P in the surface of the sediment decreased by 90%, 73%, and 93% in comparison to the control group. The analysis of microbial community structure based on 16S rRNA high-throughput sequencing showed that the order Bacillales and Micrococcales contributed to nitrogen removal significantly increased by 19.44% and 3.94%, respectively, while the order Steroidobacterales, Rhizobiales, and Microtrichales involved in the immobilization of carbon and nitrogen were significantly decreased by 4.03%, 2.69%, and 2.3% in the aeration group, respectively. Variation in the number of functional microorganisms based on the MPN method revealed that moving aeration promoted the growth of nitrifying bacteria and denitrifying bacteria. These findings demonstrated that moving aeration is effective in repairing eutrophic water and eliminating endogenous N pollutants.


Asunto(s)
Desnitrificación , Estanques , ARN Ribosómico 16S , Reactores Biológicos/microbiología , Nitrógeno , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA