Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 262: 116548, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986250

RESUMEN

An effective strategy for accurately detecting single nucleotide variants (SNVs) is of great significance for genetic research and diagnostics. However, strict amplification conditions, complex experimental instruments, and specialized personnel are required to obtain a satisfactory tradeoff between sensitivity and selectivity for SNV discrimination. In this study, we present a CRISPR-based transistor biosensor for the rapid and highly selective detection of SNVs in viral RNA. By introducing a synthetic mismatch in the crRNA, the CRISPR-Cas13a protein can be engineered to capture the target SNV RNA directly on the surface of the graphene channel. This process induces a fast electrical signal response in the transistor, obviating the need for amplification or reporter molecules. The biosensor exhibits a detection limit for target RNA as low as 5 copies in 100 µL, which is comparable to that of real-time quantitative polymerase chain reaction (PCR). Its operational range spans from 10 to 5 × 105 copy mL-1 in artificial saliva solution. This capability enables the biosensor to discriminate between wild-type and SNV RNA within 15 min. By introducing 10 µL of swab samples during clinical testing, the biosensor provides specific detection of respiratory viruses in 19 oropharyngeal specimens, including influenza A, influenza B, and variants of SARS-CoV-2. This study emphasizes the CRISPR-transistor technique as a highly accurate and sensitive approach for field-deployable nucleic acid screening or diagnostics.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Polimorfismo de Nucleótido Simple , ARN Viral , Transistores Electrónicos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Humanos , Sistemas CRISPR-Cas/genética , ARN Viral/genética , ARN Viral/aislamiento & purificación , ARN Viral/análisis , Polimorfismo de Nucleótido Simple/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Disparidad de Par Base , Límite de Detección , COVID-19/virología , COVID-19/diagnóstico , Grafito/química
2.
Angew Chem Int Ed Engl ; 63(41): e202407039, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39034433

RESUMEN

Given the high degree of variability and complexity of cancer, precise monitoring and logical analysis of different nucleic acid markers are crucial for improving diagnostic precision and patient survival rates. However, existing molecular diagnostic methods normally suffer from high cost, cumbersome procedures, dependence on specialized equipment and the requirement of in-depth expertise in data analysis, failing to analyze multiple cancer-associated nucleic acid markers and provide immediate results in a point-of-care manner. Herein, we demonstrate a transistor-based DNA molecular computing (TDMC) platform that enables simultaneous detection and logical analysis of multiple microRNA (miRNA) markers on a single transistor. TDMC can perform not only basic logical operations such as "AND" and "OR", but also complex cascading computing, opening up new dimensions for multi-index logical analysis. Owing to the high efficiency, sensing and computations of multi-analytes can be operated on a transistor at a concentration as low as 2×10-16 M, reaching the lowest concentration for DNA molecular computing. Thus, TDMC achieves an accuracy of 98.4 % in the diagnosis of hepatocellular carcinoma from 62 serum samples. As a convenient and accurate platform, TDMC holds promise for applications in "one-stop" personalized medicine.


Asunto(s)
ADN , Transistores Electrónicos , Humanos , ADN/química , MicroARNs/análisis , MicroARNs/sangre , Neoplasias/diagnóstico , Computadores Moleculares , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/análisis , Técnicas Biosensibles
3.
Anal Chem ; 96(21): 8300-8307, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38747393

RESUMEN

An antibody transistor is a promising biosensing platform for the diagnosis and monitoring of various diseases. Nevertheless, the low concentration and short half-life of biomarkers require biodetection at the trace-molecule level, which remains a challenge for existing antibody transistors. Herein, we demonstrate a graphene field-effect transistor (gFET) with electrically oriented antibody probes (EOA-gFET) for monitoring several copies of methylated DNA. The electric field confines the orientation of antibody probes on graphene and diminishes the distance between graphene and methylated DNAs captured by antibodies, generating more induced charges on graphene and amplifying the electric signal. EOA-gFET realizes a limit of detection (LoD) of ∼0.12 copy µL-1, reaching the lowest LoD reported before. EOA-gFET shows a distinguishable signal for liver cancer clinical serum samples within ∼6 min, which proves its potential as a powerful tool for disease screening and diagnosis.


Asunto(s)
Anticuerpos , Técnicas Biosensibles , Metilación de ADN , Grafito , Transistores Electrónicos , Humanos , Grafito/química , Anticuerpos/inmunología , Anticuerpos/química , ADN/química , Límite de Detección , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/sangre
4.
Adv Mater ; 36(15): e2312540, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38288781

RESUMEN

On-site diagnostic tests that accurately identify disease biomarkers lay the foundation for self-healthcare applications. However, these tests routinely rely on single-mode signals and suffer from insufficient accuracy, especially for multiplexed point-of-care tests (POCTs) within a few minutes. Here, this work develops a dual-mode multiclassification diagnostic platform that integrates an electrochemiluminescence sensor and a field-effect transistor sensor in a microfluidic chip. The microfluidic channel guides the testing samples to flow across electro-optical sensor units, which produce dual-mode readouts by detecting infectious biomarkers of tuberculosis (TB), human rhinovirus (HRV), and group B streptococcus (GBS). Then, machine-learning classifiers generate three-dimensional (3D) hyperplanes to diagnose different diseases. Dual-mode readouts derived from distinct mechanisms enhance the anti-interference ability physically, and machine-learning-aided diagnosis in high-dimensional space reduces the occasional inaccuracy mathematically. Clinical validation studies with 501 unprocessed samples indicate that the platform has an accuracy approaching 99%, higher than the 77%-93% accuracy of rapid point-of-care testing technologies at 100% statistical power (>150 clinical tests). Moreover, the diagnosis time is 5 min without a trade-off of accuracy. This work solves the occasional inaccuracy issue of rapid on-site diagnosis, endowing POCT systems with the same accuracy as laboratory tests and holding unique prospects for complicated scenes of personalized healthcare.


Asunto(s)
Sistemas de Atención de Punto , Pruebas en el Punto de Atención , Humanos , Microfluídica , Biomarcadores
5.
Adv Mater ; 36(5): e2307366, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37805919

RESUMEN

"Test-and-go" single-nucleotide variation (SNV) detection within several minutes remains challenging, especially in low-abundance samples, since existing methods face a trade-off between sensitivity and testing speed. Sensitive detection usually relies on complex and time-consuming nucleic acid amplification or sequencing. Here, a graphene field-effect transistor (GFET) platform mediated by Argonaute protein that enables rapid, sensitive, and specific SNV detection is developed. The Argonaute protein provides a nanoscale binding channel to preorganize the DNA probe, accelerating target binding and rapidly recognizing SNVs with single-nucleotide resolution in unamplified tumor-associated microRNA, circulating tumor DNA, virus RNA, and reverse transcribed cDNA when a mismatch occurs in the seed region. An integrated microchip simultaneously detects multiple SNVs in agreement with sequencing results within 5 min, achieving the fastest SNV detection in a "test-and-go" manner without the requirement of nucleic acid extraction, reverse transcription, and amplification.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Nucleótidos , Proteínas Argonautas , ADN/genética , MicroARNs/genética , Sondas de ADN
6.
Adv Sci (Weinh) ; 11(6): e2307840, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070186

RESUMEN

Early diagnosis of acute diseases is restricted by the sensitivity and complex process of sample treatment. Here, an ultrasensitive, rapid, and portable electrochemiluminescence-microfluidic (ECL-M) system is described via sandwich-type immunoassay and surface plasmonic resonance (SPR) assay. Using a sandwich immunoreaction approach, the ECL-M system employs cardiac troponin-I antigen (cTnI) as a detection model with a Ru@SiO2 NPs labeled antibody as the signal probe. For miR-499-5p detection, gold nanoparticles generate SPR effects to enhance Ru(bpy)3 2+ ECL signals. The system based on alternating current (AC) electroosmotic flow achieves an LOD of 2 fg mL-1 for cTnI in 5 min and 10 aM for miRNAs in 10 min at room temperature. The point-of-care testing (POCT) device demonstrated 100% sensitivity and 98% specificity for cTnI detection in 123 clinical serum samples. For miR-499-5p, it exhibited 100% sensitivity and 97% specificity in 55 clinical serum samples. Continuous monitoring of these biomarkers in rats' saliva, urine, and interstitial fluid samples for 48 hours revealed observations rarely documented in biotic fluids. The ECL-M POCT device stands as a top-performing system for ECL analysis, offering immense potential for ultrasensitive, rapid, highly accurate, and facile detection and monitoring of acute diseases in POC settings.


Asunto(s)
Nanopartículas del Metal , MicroARNs , Ratas , Animales , Electroósmosis , Oro , Dióxido de Silicio , Enfermedad Aguda , Microfluídica , Técnicas Electroquímicas , Mediciones Luminiscentes
7.
Anal Chem ; 95(35): 13281-13288, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37610301

RESUMEN

MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of simple and label-free diagnostics. Herein, a GFET biosensor based on tetrahedral DNA nanostructure (TDN)-assisted catalytic hairpin assembly (CHA) reaction (TCHA) has been fabricated and applied to the sensitive and specific detection of miRNA-21. TDN structures are assembled to construct the biosensing interface, facilitating CHA reaction by providing free space and preventing unwanted entanglements, aggregation, and adsorption of probes on the graphene channel. Owing to synergistic effects of TDN-assisted in situ nucleic acid amplification on the sensing surface, as well as inherent signal sensitization of GFETs, the biosensor exhibits ultrasensitive detection of miRNA-21 down to 5.67 × 10-19 M, approximately three orders of magnitude lower than that normally achieved by graphene transistors with channel functionalization of single-stranded DNA probes. In addition, the biosensor demonstrates excellent analytical performance regarding selectivity, stability, and reproducibility. Furthermore, the practicability of the biosensor is verified by analyzing targets in a complex serum environment and cell lysates, showing tremendous potential in bioanalysis and clinical diagnosis.


Asunto(s)
Grafito , MicroARNs , Reproducibilidad de los Resultados , Adsorción , Catálisis
8.
Nat Protoc ; 18(7): 2313-2348, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37208410

RESUMEN

Biological research and diagnostic applications normally require analysis of trace analytes in biofluids. Although considerable advancements have been made in developing precise molecular assays, the trade-off between sensitivity and ability to resist non-specific adsorption remains a challenge. Here, we describe the implementation of a testing platform based on a molecular-electromechanical system (MolEMS) immobilized on graphene field-effect transistors. A MolEMS is a self-assembled DNA nanostructure, containing a stiff tetrahedral base and a flexible single-stranded DNA cantilever. Electromechanical actuation of the cantilever modulates sensing events close to the transistor channel, improving signal-transduction efficiency, while the stiff base prevents non-specific adsorption of background molecules present in biofluids. A MolEMS realizes unamplified detection of proteins, ions, small molecules and nucleic acids within minutes and has a limit of detection of several copies in 100 µl of testing solution, offering an assay methodology with wide-ranging applications. In this protocol, we provide step-by-step procedures for MolEMS design and assemblage, sensor manufacture and operation of a MolEMS in several applications. We also describe adaptations to construct a portable detection platform. It takes ~18 h to construct the device and ~4 min to finish the testing from sample addition to result.


Asunto(s)
Técnicas Biosensibles , Grafito , Ácidos Nucleicos , Técnicas Biosensibles/métodos , ADN/análisis , ADN de Cadena Simple , Proteínas , Grafito/química
9.
J Am Chem Soc ; 145(18): 10035-10044, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37097713

RESUMEN

Compared with traditional assay techniques, field-effect transistors (FETs) have advantages such as fast response, high sensitivity, being label-free, and point-of-care detection, while lacking generality to detect a wide range of small molecules since most of them are electrically neutral with a weak doping effect. Here, we demonstrate a photo-enhanced chemo-transistor platform based on a synergistic photo-chemical gating effect in order to overcome the aforementioned limitation. Under light irradiation, accumulated photoelectrons generated from covalent organic frameworks offer a photo-gating modulation, amplifying the response to small molecule adsorption including methylglyoxal, p-nitroaniline, nitrobenzene, aniline, and glyoxal when measuring the photocurrent. We perform testing in buffer, artificial urine, sweat, saliva, and diabetic mouse serum. The limit of detection is down to 10-19 M methylglyoxal, about 5 orders of magnitude lower than existing assay technologies. This work develops a photo-enhanced FET platform to detect small molecules or other neutral species with enhanced sensitivity for applications in fields such as biochemical research, health monitoring, and disease diagnosis.


Asunto(s)
Técnicas Biosensibles , Líquidos Corporales , Animales , Ratones , Técnicas Biosensibles/métodos , Piruvaldehído , Saliva , Transistores Electrónicos
10.
Anal Chem ; 95(2): 1446-1453, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36577081

RESUMEN

An aptamer-based field-effect transistor (Apta-FET) is a well-developed assay method with high selectivity and sensitivity. Due to the limited information density that natural nucleotide library holds, the Apta-FET faces fundamental restriction in universality to detect various types of analytes. Herein, we demonstrate a type of Apta-FET sensors based on an artificial nucleotide aptamer (AN-Apta-FET). The introduction of an artificial nucleotide increases the diversity of the potential aptamer structure and expands the analyte category of the Apta-FET. The AN-Apta-FET specifically detects hepatoma exosomes, which traditional Apta-FET fails to discriminate from other tumor-derived exosomes, with a limit of detection down to 242 particles mL-1. The AN-Apta-FET distinguishes serum samples of hepatocellular carcinoma patients within 9 min from those of healthy people, showing the potential as a comprehensive assay tool in future disease diagnosis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Carcinoma Hepatocelular , Exosomas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Neoplasias Hepáticas/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA