Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 672
1.
Sci Rep ; 14(1): 12765, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834645

Blood flow infections (BSIs) is common occurrences in intensive care units (ICUs) and are associated with poor prognosis. The study aims to identify risk factors and assess mortality among BSI patients admitted to the ICU at Shanghai Ruijin hospital north from January 2022 to June 2023. Additionally, it seeks to present the latest microbiological isolates and their antimicrobial susceptibility. Independent risk factors for BSI and mortality were determined using the multivariable logistic regression model. The study found that the latest incidence rate of BSI was 10.11%, the mortality rate was 35.21% and the mean age of patients with BSI was 74 years old. Klebsiella pneumoniae was the predominant bacterial isolate. Logistic multiple regression revealed that tracheotomy, tigecycline, gastrointestinal bleeding, shock, length of hospital stay, age and laboratory indicators (such as procalcitonine and hemoglobin) were independent risk factors for BSI. Given the elevated risk associated with use of tracheotomy and tigecycline, it underscores the importance of the importance of cautious application of tracheostomy and empirical antibiotic management strategies. Meanwhile, the independent risk factors of mortality included cardiovascular disease, length of hospital stay, mean platelet volume (MPV), uric acid levels and ventilator. BSI patients exhibited a significant decrease in platelet count, and MPV emerged as an independent factor of mortality among them. Therefore, continuous monitoring of platelet-related parameters may aid in promptly identifying high-risk patients and assessing prognosis. Moreover, monitoring changes in uric acid levels may serve as an additional tool for prognostic evaluation in BSI patients.


Bacteremia , Intensive Care Units , Tertiary Care Centers , Humans , China/epidemiology , Male , Aged , Risk Factors , Female , Middle Aged , Bacteremia/epidemiology , Bacteremia/microbiology , Bacteremia/mortality , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Length of Stay , Incidence , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/pathogenicity , Adult
2.
Thromb Res ; 240: 109044, 2024 May 29.
Article En | MEDLINE | ID: mdl-38824799

Protein C (PC), a vitamin K-dependent serine protease zymogen in plasma, can be activated by thrombin-thrombomodulin(TM) complex, resulting in the formation of activated protein C (APC). APC functions to downregulate thrombin generation by inactivating active coagulation factors V(FVa) and VIII(FVIIIa). Deficiency in PC increases the risk of venous thromboembolism (VTE). We have identified two unrelated VTE patients with the same heterozygous mutation (c.1384 T > C, p.Ter462GlnextTer17) in PROC. To comprehend the role of this mutation in VTE development, we expressed recombinant PC-Ter462GlnextTer17 in mammalian cells and evaluated its characteristics using established coagulation assay systems. Functional studies revealed a significant impairment in the activation of the mutant by thrombin or thrombin-TM complex. Furthermore, APC-Ter462GlnextTer17 demonstrated diminished hydrolytic activity towards the chromogenic substrate S2366. APTT and FVa degradation assays showed that both the anticoagulant activity of the mutant protein was markedly impaired, regardless of whether protein S was present or absent. These results were further supported by a thrombin generation assay conducted using purified and plasma-based systems. In conclusion, the Ter462GlnextTer17 mutation introduces a novel tail at the C-terminus of PC, leading to impaired activity in both PC zymogen activation and APC's anticoagulant function. This impairment contributes to thrombosis in individuals carrying this heterozygous mutation and represents a genetic risk factor for VTE.

3.
Medicine (Baltimore) ; 103(19): e38065, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728521

Knee varus (KV) deformity leads to abnormal forces in the different compartments of the joint cavity and abnormal mechanical loading thus leading to knee osteoarthritis (KOA). This study used computer-aided design to create 3-dimensional simulation models of KOA with varying varus angles to analyze stress distribution within the knee joint cavity using finite element analysis for different varus KOA models and to compare intra-articular loads among these models. Additionally, we developed a cartilage loading model of static KV deformity to correlate with dynamic clinical cases of cartilage injury. Different KV angle models were accurately simulated with computer-aided design, and the KV angles were divided into (0°, 3°, 6°, 9°, 12°, 15°, and 18°) 7 knee models, and then processed with finite element software, and the Von-Mises stress distribution and peak values of the cartilage of the femoral condyles, medial tibial plateau, and lateral plateau were obtained by simulating the human body weight in axial loading while performing the static extension position. Finally, intraoperative endoscopy visualization of cartilage injuries in clinical cases corresponding to KV deformity subgroups was combined to find cartilage loading and injury correlations. With increasing varus angle, there was a significant increase in lower limb mechanical axial inward excursion and peak Von-Mises stress in the medial interstitial compartment. Analysis of patients' clinical data demonstrated a significant correlation between varus deformity angle and cartilage damage in the knee, medial plateau, and patellofemoral intercompartment. Larger varus deformity angles could be associated with higher medial cartilage stress loads and increased cartilage damage in the corresponding peak stress area. When the varus angle exceeds 6°, there is an increased risk of cartilage damage, emphasizing the importance of early surgical correction to prevent further deformity and restore knee function.


Cartilage, Articular , Finite Element Analysis , Knee Joint , Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/surgery , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Knee Joint/physiopathology , Male , Weight-Bearing/physiology , Biomechanical Phenomena , Middle Aged , Stress, Mechanical , Female , Computer Simulation , Aged
4.
mSystems ; : e0116423, 2024 May 15.
Article En | MEDLINE | ID: mdl-38747582

Salmonella 4,[5],12:i:-, a monophasic variant of Salmonella Typhimurium, has emerged as a global cause of multidrug-resistant salmonellosis and has become endemic in many developing and developed countries, especially in China. Here, we have sequenced 352 clinical isolates in Guangdong, China, during 2009-2019 and performed a large-scale collection of Salmonella 4,[5],12:i:- with whole genome sequencing (WGS) data across the globe, to better understand the population structure, antimicrobial resistance (AMR) genomic characterization, and transmission routes of Salmonella 4,[5],12:i:- across Guangdong. Salmonella 4,[5],12:i:- strains showed broad genetic diversity; Guangdong isolates were found to be widely distributed among the global lineages. Of note, we identified the formation of a novel Guangdong clade (Bayesian analysis of population structure lineage 1 [BAPS1]) genetically diversified from the global isolates and likely emerged around 1990s. BAPS1 exhibits unique genomic features, including large pan-genome, decreased ciprofloxacin susceptibility due to mutation in gyrA and carriage of plasmid-mediated quinolone resistance (PMQR) genes, and the multidrug-resistant IncHI2 plasmid. Furthermore, high genetic similarity was found between strains collected from Guangdong, Europe, and North America, indicating the association with multiple introductions from overseas. These results suggested that global dissemination and local clonal expansion simultaneously occurred in Guangdong, China, and horizontally acquired resistance to first-line and last-line antimicrobials at local level, underlying emergences of extensive drug and pan-drug resistance. Our findings have increased the knowledge of global and local epidemics of Salmonella 4,[5],12:i:- in Guangdong, China, and provided a comprehensive baseline data set essential for future molecular surveillance.IMPORTANCESalmonella 4,[5],12:i:- has been regarded as the predominant pandemic serotype causing diarrheal diseases globally, while multidrug resistance (MDR) constitutes great public health concerns. This study provided a detailed and comprehensive genome-scale analysis of this important Salmonella serovar in the past decade in Guangdong, China. Our results revealed the complexity of two distinct transmission modes, namely global transmission and local expansion, circulating in Guangdong over a decade. Using phylogeography models, the origin of Salmonella 4,[5],12:i:- was predicted from two aspects, year and country, that is, Salmonella 4,[5],12:i:- emerged in 1983, and was introduced from the UK, and subsequently differentiated into the local endemic lineage circa 1991. Additionally, based on the pan-genome analysis, it was found that the gene accumulation rate in local endemic BAPS 1 lineage was higher than in other lineages, and the horizontal transmission of MDR IncHI2 plasmid associated with high resistance played a major role, which showed the potential threat to public health.

5.
Food Funct ; 15(10): 5596-5612, 2024 May 20.
Article En | MEDLINE | ID: mdl-38722000

In the presented study, natural rice containing high resistant starch content was used as a raw material to produce rice resistant starch (RRS) through enzymatic hydrolysis with heat-stable α-amylase and glucoamylase. The chemical composition, structural characteristics and in vitro glycemic index (GI) of RRS were evaluated. The effects of RRS at different doses on the body weight, serum biochemical levels, pathological indexes, production of short-chain fatty acids (SCFAs) in the gut and the intestinal microbial composition in T2DM mice were investigated. The results of physiochemical characterization indicated that, relative to rice flour, RRS mainly comprising resistant starch had higher crystallinity (25.85%) and a more stable structure, which contributed to its lower digestibility and decreased GI in vitro. Compared with the model control group, 1 g per kg BW and 2 g per kg BW oral gavage dosages of RRS effectively enhanced the SCFA productivity in the T2DM mouse gut, as well as alleviating T2DM symptoms, involving an increase in body weight, reduction in fasting blood glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, alanine transaminase and aspartate aminotransferase, and an increase in serum insulin and high-density lipoprotein cholesterol. Besides, 1 g per kg BW and 2 g per kg BW dosages of RRS mitigated T2DM-induced pancreas damage. Furthermore, up-regulation in the abundance of probiotics (Lactobacillus, Ruminococcus, etc.) and down-regulation in the number of harmful bacteria (Desulfovibrio, Prevotella, etc.) were observed in all RRS-treated groups. In summary, this work suggested that RRS prepared using heat-stable α-amylase and glucoamylase could be a potential functional component for amelioration of T2DM applied in the fields of food and pharmaceutics.


Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Glucan 1,4-alpha-Glucosidase , Oryza , Starch , alpha-Amylases , Animals , Oryza/chemistry , Mice , Gastrointestinal Microbiome/drug effects , Glucan 1,4-alpha-Glucosidase/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , alpha-Amylases/metabolism , Male , Starch/chemistry , Starch/metabolism , Starch/pharmacology , Blood Glucose/metabolism , Fatty Acids, Volatile/metabolism , Resistant Starch/pharmacology , Hot Temperature , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Humans
6.
PLoS One ; 19(5): e0297878, 2024.
Article En | MEDLINE | ID: mdl-38753621

OBJECTIVE: This study explores the age effects of the sport education model(SEM) on the impact of basic psychological needs (autonomy, competence, relatedness) and intrinsic motivation (interest, enjoyment, satisfaction) among adolescent students. METHOD: Retrieval of relevant literature from PubMed, Web of Science, Scopus, and China National Knowledge Infrastructure (CNKI). The search period ranged from the starting year to January 7, 2024. Subsequently, literature screening, data extraction, and quality assessment will be conducted, and data analysis will be performed using "Review Manager 5.4" software. RESULT: Overall, SEM has a positive and statistically significant impact on the basic psychological needs (MD = 0.36,95% CI [0.22, 0.50]) and intrinsic motivation (MD = 0.75, 95% CI [0.58, 0.93]) of adolescent students (P<0.01). Subgroup analysis revealed age effects on the impact of SEM on the basic psychological needs of adolescent students: pre-peak height velocity (PRE-PHV) (MD = 0.39, 95% CI [0.23, 0.56], I2 = 45%, P<0.01), mid-peak height velocity (MID-PHV) (MD = 0.22, 95% CI [0.01, 0.42], I2 = 82%, P<0.05), post-peak height velocity (POST-PHV) (MD = 1.27, 95% CI [0.79, 1.74], I2 = 0%, P<0.01). Similarly, age effects were found for intrinsic motivation: MID-PHV (MD = 0.86, 95% CI [0.62, 1.11], I2 = 68%, P<0.01), POST-PHV (MD = 0.56, 95% CI [0.40, 0.72], I2 = 0%, P<0.01). CONCLUSION: The SEM is an effective approach to enhancing the basic psychological needs and intrinsic motivation of adolescent students. However, it exhibits age effects among students at different developmental stages. Specifically, in terms of enhancing basic psychological needs, the model has the greatest impact on POST-PHV students, followed by PRE-PHV students, while the improvement effect is relatively lower for MID-PHV students. The enhancement effect on intrinsic motivation diminishes with increasing age.


Motivation , Sports , Students , Humans , Adolescent , Students/psychology , Sports/psychology , Age Factors , Male , Female
7.
J Thromb Haemost ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38788977

BACKGROUND: Protein C (PC) pathway serves as a major defense mechanism against thrombosis by the activation of PC through the thrombin-thrombomodulin (TM) complex and subsequent inactivation of the activated factor V (FVa) and factor VIII (FVIIIa) with the assistance of protein S, thereby contributing to hemostatic balance. We identified two unrelated patients who suffered from recurrent thrombosis and carried the same heterozygous mutation c.1153A>G, p. Met343Val (M343V) in PROC gene. This mutation had not been previously reported. OBJECTIVES: To explore the molecular basis underlying the anticoagulant defect in patients carrying the M343V mutation in PROC. METHODS: We expressed PC-M343V variant in mammalian cells and characterized its properties through coagulation assays. RESULTS: Our findings demonstrated that while activation of mutant zymogen by thrombin-TM was slightly affected, cleavage of chromogenic substrate by APC-M343V was significantly impaired. However, Ca2+ increased the cleavage efficiency by approximately 50%. Additionally, there was a severe reduction in affinity between APC-M343V and Na+. Furthermore, the inhibitory ability of APC-M343V towards FVa was markedly impaired. Structural and simulation analyses suggested that Val343 might disrupt the potential hydrogen bonds with Trp380 and cause Trp380 to orient closer to His211, potentially interfering with substrate binding and destabilizing the catalytic triad of APC. CONCLUSION: The M343V mutation in patients adversely affects the reactivity and/or folding of the active site as well as the binding of the physiological substrate to the protease, resulting in impaired protein C anticoagulant activity, ultimately leading to thrombosis.

8.
Cell Biol Toxicol ; 40(1): 37, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777957

Bisphenol A (BPA) is a common component in the manufacture of daily plastic consumer goods. Recent studies have suggested that prenatal exposure to BPA can increase the susceptibility of offspring to mental illness, although the underlying mechanisms remain unclear. In this study, we performed transcriptomic and epigenomic profiling in the adult mouse brain following prenatal exposure to low-dose BPA. We observed a sex-specific transcriptional dysregulation in the cortex, with more significant differentially expressed genes was observed in adult cortex from male offspring. Moreover, the upregulated genes primarily influenced neuronal functions, while the downregulated genes were significantly associated with energy metabolism pathways. More evidence supporting impaired mitochondrial function included a decreased ATP level and a reduced number of mitochondria in the cortical neuron of the BPA group. We further investigated the higher-order chromatin regulatory patterns of DEGs by incorporating published Hi-C data. Interestingly, we found that upregulated genes exhibited more distal interactions with multiple enhancers, while downregulated genes displayed relatively short-range interactions among adjacent genes. Our data further revealed decreased H3K9me3 signal on the distal enhancers of upregulated genes, whereas increased DNA methylation and H3K27me3 signals on the promoters of downregulated genes. In summary, our study provides compelling evidence for the potential health risks associated with prenatal exposure to BPA, and uncovers sex-specific transcriptional changes with a complex interplay of multiple epigenetic mechanisms.


Benzhydryl Compounds , Brain , DNA Methylation , Epigenesis, Genetic , Phenols , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Female , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Epigenesis, Genetic/drug effects , Male , Mice , Brain/metabolism , Brain/drug effects , DNA Methylation/drug effects , Transcriptome/drug effects , Transcriptome/genetics , Mice, Inbred C57BL
9.
Int J Pharm ; 658: 124225, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38750982

High-altitude sleep disturbance is a common symptom of acute mountain sickness, which can be alleviated via modulation of the gut-brain axis. Quercetin (Que) is used to modulate gut microbiota and serves as a potential drug to regulate the gut-brain axis, but the poor solubility and bioavailability affect its biological functions. Here, Que nanoparticles (QNPs) were prepared with zein using an antisolvent method, and QNP-loaded calcium alginate hydrogel microspheres (QNP@HMs) were prepared using electrospinning technology to improve the gastrointestinal stability and intestinal adhesion of QNPs. In the mouse model of high-altitude sleep disturbance, oral administration of QNP@HMs before the mice entering high altitude prolonged sleep duration, improved blood cell recovery, spontaneous behavior and short-term memory, and reduced such inflammation factors as TNF-α and iNOS. Moreover, QNP@HMs enhanced the abundance of probiotics in the gut, including Lactobacillus and Lachnospira, and reduced intestinal inflammation. However, in the mice after gut sterilization by long-term oral antibiotics, QNP@HMs showed no therapeutic effect. QNP@HMs are a promising medication for the prevention of high-altitude sleep disturbance based on the gut-brain axis.


Brain , Gastrointestinal Microbiome , Hydrogels , Microspheres , Nanoparticles , Quercetin , Animals , Quercetin/administration & dosage , Quercetin/pharmacology , Quercetin/chemistry , Nanoparticles/administration & dosage , Hydrogels/administration & dosage , Gastrointestinal Microbiome/drug effects , Administration, Oral , Male , Mice , Brain/drug effects , Brain/metabolism , Alginates/chemistry , Alginates/administration & dosage , Probiotics/administration & dosage
10.
Org Lett ; 26(21): 4548-4553, 2024 May 31.
Article En | MEDLINE | ID: mdl-38757610

gem-Difluoroalkenes and monofluorinated cycloalkenes have emerged as basic structural units in a variety of bioactive molecules and natural products. Thus, developing straightforward and efficient methods for synthesizing fluorinated alkene compounds is of considerable significance. Herein, we disclose a visible-light-induced defluorination of 2-trifluoromethyl-1-alkene via a 1,5-HAT process using N-alkoxyphtalimides as both radical precursor and potential nucleophile. The mild and stepwise reaction leads to a variety of structurally diverse gem-difluoroalkenes and monofluorinated cyclooctenes with high efficiency, respectively.

11.
BMC Public Health ; 24(1): 1353, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769495

BACKGROUND: Community medical institutions play a vital role in China's healthcare system. While the number of these institutions has increased in recent years, their construction contents remain insufficient. The potential of community medical institutions in preventing, screening, diagnosing, and treating non-communicable chronic diseases (NCDs) has not been fully utilized. This study aims to assess the status of construction contents in community medical institutions in Southwest China and examine how these contents influence the medical choices of NCD patients. METHODS: Descriptive statistics were used to evaluate the construction content of community medical institutions. Multiple-sets of multinomial logistic regression were employed to analyze the associations and marginal impacts between construction content and medical choices. Shapley value analysis was applied to determine the contribution and ranking of these impacts. RESULTS: Descriptive statistics revealed satisfactory construction contents in community medical institutions. Notably, factors such as service attitude, nursing services, expert consultations, charging standards, medical equipment, medical examinations, privacy protection, and referrals significantly influenced medical choices. Among these, service attitude, charging standards, and privacy protection had the most significant marginal improvement effects on NCD patients' choices, with improvements of 12.7%, 10.2%, and 5.9%, respectively. The combined contribution of privacy protection, medical examinations, service attitude, charging standards, and nursing services to medical choices exceeded 80%. CONCLUSION: Optimizing the service contents of community institutions can encourage NCD patients to seek medical care at grassroots hospitals. This study addresses crucial gaps in existing literature and offers practical insights for implementing new medical reform policies, particularly in underdeveloped regions of Southwest China focusing on hierarchical diagnosis and treatment.


Community Health Services , Noncommunicable Diseases , Humans , China , Noncommunicable Diseases/therapy , Female , Male , Choice Behavior , Middle Aged , Chronic Disease/therapy , Adult
12.
J Hazard Mater ; 472: 134530, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38718514

Constructing green and sustainable advanced oxidation processes (AOPs) for the degradation of organic contaminants is of great importance but still remains big challenge. In this work, an effective AOP (MnFe2O4-activated periodate, MnFe2O4/PI) was established and investigated for the oxidation of organic contaminants. To avoid the severe aggregation of MnFe2O4 nanoparticles, a hybrid MnFe2O4-biochar catalyst (MnFe2O4-BC) was further synthesized by anchoring MnFe2O4 nanoparticles on chemically inert biochar substrate. Intriguingly, MnFe2O4-BC/PI exhibited different selectivity towards organic contaminants compared with MnFe2O4/PI, revealing that biochar not only served as the substrate, but also directly participated into the oxidation process. Electron-transfer mechanism was comprehensively elucidated to be responsible for the abatement of pollutants in both MnFe2O4/PI and MnFe2O4-BC/PI. The surface oxygen vacancies (OVs) of MnFe2O4 were identified as the active sites for the formation of high potential complexes MnFe2O4-PI*, which could directly and indirectly degrade the organic pollutants. For the hybrid MnFe2O4-BC catalyst, biochar played multiple roles: (i) substrate, (ii) provided massive adsorption sites, (iii) electron-transfer mediator. The differences in selectivity of MnFe2O4/PI and MnFe2O4-BC/PI were determined by the adsorption affinity between biochar substrate and organics. Overall, the findings of this study expand the knowledge on the selectivity of PI-triggered AOPs.


Charcoal , Ferric Compounds , Manganese Compounds , Oxidation-Reduction , Charcoal/chemistry , Manganese Compounds/chemistry , Ferric Compounds/chemistry , Catalysis , Electron Transport , Water Pollutants, Chemical/chemistry
13.
Haematologica ; 2024 May 30.
Article En | MEDLINE | ID: mdl-38813732

Impaired differentiation of megakaryocytes constitutes the principal etiology of thrombocytopenia. The signal transducer and activator of transcription 3 (STAT3) is a crucial transcription factor in regulating megakaryocyte differentiation, yet the precise mechanism of its activation remains unclear. PALLD, an actin-associated protein, has been increasingly recognized for its essential functions in multiple biological processes. This study revealed that megakaryocyte/plateletspecific knockout of PALLD in mice exhibited thrombocytopenia due to diminished platelet biogenesis. In megakaryocytes, PALLD deficiency led to impaired proplatelet formation and polyploidization, ultimately weakening their differentiation for platelet production. Mechanistic studies demonstrated that PALLD bound to STAT3 and interacted with its DNA-binding domain (DBD) and Src homology 2 (SH2) domain via Immunoglobulin domain 3 (Ig3). Moreover, the absence of PALLD attenuated STAT3 Y705 phosphorylation and impeded STAT3 nuclear translocation. Based on the PALLD-STAT3 binding sequence, we designed a peptide C-P3, which can facilitate megakaryocyte differentiation and accelerate platelet production in vivo. In conclusion, this study highlights the pivotal role of PALLD in megakaryocyte differentiation and proposes a novel approach for treating thrombocytopenia by targeting the PALLD-STAT3 interaction.

14.
Front Physiol ; 15: 1352391, 2024.
Article En | MEDLINE | ID: mdl-38562620

For patients with chronic obstructive pulmonary disease (COPD), the assessment of the treatment efficacy during hospitalization is of importance to the optimization of clinical treatments. Conventional spirometry might not be sensitive enough to capture the regional lung function development. The study aimed to evaluate the feasibility of using electrical impedance tomography (EIT) as an objective bedside evaluation tool for the treatment of acute exacerbation of COPD (AECOPD). Consecutive patients who required hospitalization due to AECOPD were included prospectively. EIT measurements were conducted at the time of admission and before the discharge simultaneously when a forced vital capacity maneuver was conducted. EIT-based heterogeneity measures of regional lung function were calculated based on the impedance changes over time. Surveys for attending doctors and patients were designed to evaluate the ease of use, feasibility, and overall satisfaction level to understand the acceptability of EIT measurements. Patient-reported outcome assessments were conducted. User's acceptance of EIT technology was investigated with a five-dimension survey. A total of 32 patients were included, and 8 patients were excluded due to the FVC maneuver not meeting the ATS criteria. Spirometry-based lung function was improved during hospitalization but not significantly different (FEV1 %pred.: 35.8% ± 6.7% vs. 45.3% ± 8.8% at admission vs. discharge; p = 0.11. FVC %pred.: 67.8% ± 0.4% vs. 82.6% ± 5.0%; p = 0.15. FEV1/FVC: 0.41 ± 0.09 vs. 0.42 ± 0.07, p = 0.71). The symptoms of COPD were significantly improved, but the correlations between the improvement of symptoms and spirometry FEV1 and FEV1/FVC were low (R = 0.1 and -0.01, respectively). The differences in blood gasses and blood tests were insignificant. All but one EIT-based regional lung function parameter were significantly improved after hospitalization. The results highly correlated with the patient-reported outcome assessment (R > 0.6, p < 0.001). The overall acceptability score of EIT measurement for both attending physicians and patients was high (4.1 ± 0.8 for physicians, 4.5 ± 0.5 for patients out of 5). These results demonstrated that it was feasible and acceptable to use EIT as an objective bedside evaluation tool for COPD treatment efficacy.

15.
Cancers (Basel) ; 16(7)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38611111

The anti-tumor function of CD8+ T cells is dependent on their proximity to tumor cells. Current studies have focused on the infiltration level of CD8+ T cells in the tumor microenvironment, while further spatial information, such as spatial localization and inter-cellular communication, have not been defined. In this study, co-detection by indexing (CODEX) was designed to characterize PDAC tissue regions with seven protein markers in order to identify the spatial architecture that regulates CD8+ T cells in human pancreatic ductal adenocarcinoma (PDAC). The cellular neighborhood algorithm was used to identify a total of six conserved and distinct cellular neighborhoods. Among these, one unique spatial architecture of CD8+ T and CD4+ T cell-enriched neighborhoods enriched the majority of CD8+ T cells, but heralded a poor prognosis. The proximity analysis revealed that the CD8+ T cells in this spatial architecture were significantly closer to themselves and the CD4+ T cells than to the tumor cells. Collectively, we identified a unique spatial architecture that restricted the proximity of CD8+ T cells to tumor cells in the tumor microenvironment, indicating a novel immune evasion mechanism of pancreatic ductal adenocarcinoma in a topologically regulated manner and providing new insights into the biology of PDAC.

16.
Mol Cancer ; 23(1): 70, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38576002

BACKGROUND: Cellular senescence frequently occurs during anti-cancer treatment, and persistent senescent tumor cells (STCs) unfavorably promote tumor progression through paracrine secretion of the senescence-associated secretory phenotype (SASP). Extracellular vesicles (EVs) have recently emerged as a novel component of the SASP and primarily mediate the tumor-promoting effect of the SASP. Of note, the potential effect of EVs released from STCs on tumor progression remains largely unknown. METHODS: We collected tumor tissues from two cohorts of colorectal cancer (CRC) patients to examine the expression of p16, p21, and SERPINE1 before and after anti-cancer treatment. Cohort 1 included 22 patients with locally advanced rectal cancer (LARC) who received neoadjuvant therapy before surgical resection. Cohort 2 included 30 patients with metastatic CRC (mCRC) who received first-line irinotecan-contained treatment. CCK-8, transwell, wound-healing assay, and tumor xenograft experiments were carried out to determine the impacts of EVs released from STCs on CRC progression in vitro and in vivo. Quantitative proteomic analysis was applied to identify protein cargo inside EVs secreted from STCs. Immunoprecipitation and mass spectrometer identification were utilized to explore the binding partners of SERPINE1. The interaction of SERPINE1 with p65 was verified by co-immunoprecipitation, and their co-localization was confirmed by immunofluorescence. RESULTS: Chemotherapeutic agents and irradiation could potently induce senescence in CRC cells in vitro and in human CRC tissues. The more significant elevation of p16 and p21 expression in patients after anti-cancer treatment displayed shorter disease-free survival (DFS) for LARC or progression-free survival (PFS) for mCRC. We observed that compared to non-STCs, STCs released an increased number of EVs enriched in SERPINE1, which further promoted the progression of recipient cancer cells. Targeting SERPINE1 with a specific inhibitor, tiplaxtinin, markedly attenuated the tumor-promoting effect of STCs-derived EVs. Additionally, the patients with greater increment of SERPINE1 expression after anti-cancer treatment had shorter DFS for LARC or PFS for mCRC. Mechanistically, SERPINE1 bound to p65, promoting its nuclear translocation and subsequently activating the NF-κB signaling pathway. CONCLUSIONS: We provide the in vivo evidence of the clinical prognostic implications of therapy-induced senescence. Our results revealed that STCs were responsible for CRC progression by producing large amounts of EVs enriched in SERPINE1. These findings further confirm the crucial role of therapy-induced senescence in tumor progression and offer a potential therapeutic strategy for CRC treatment.


Colorectal Neoplasms , Extracellular Vesicles , Rectal Neoplasms , Humans , NF-kappa B/metabolism , Proteomics , Signal Transduction , Extracellular Vesicles/metabolism , Rectal Neoplasms/metabolism , Cellular Senescence , Colorectal Neoplasms/pathology , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/pharmacology
17.
Metabolites ; 14(4)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38668351

Rice (Oryza sativa L.) is one of the primary sources of energy and nutrients needed by the body, and rice resistant starch (RRS) has been found to have hypoglycemic effects. However, its biological activity and specific mechanisms still need to be further elucidated. In the present study, 52 RRS differential metabolites were obtained from mouse liver, rat serum, canine feces, and human urine, and 246 potential targets were identified through a literature review and database analysis. A total of 151 common targets were identified by intersecting them with the targets of type 2 diabetes mellitus (T2DM). After network pharmacology analysis, 11 core metabolites were identified, including linolenic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic acid, lithocholic acid, lithocholylglycine, glycoursodeoxycholic acid, phenylalanine, norepinephrine, cholic acid, and L-glutamic acid, and 16 core targets were identified, including MAPK3, MAPK1, EGFR, ESR1, PRKCA, FYN, LCK, DLG4, ITGB1, IL6, PTPN11, RARA, NR3C1, PTPN6, PPARA, and ITGAV. The core pathways included the neuroactive ligand-receptor interaction, cancer, and arachidonic acid metabolism pathways. The molecular docking results showed that bile acids such as glycoursodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, lithocholic acid, deoxycholic acid, and cholic acid exhibited strong docking effects with EGFR, ITGAV, ITGB1, MAPK3, NR3C1, α-glucosidase, and α-amylase. In vitro hypoglycemic experiments further suggested that bile acids showed significant inhibitory effects on α-glucosidase and α-amylase, with CDCA and UDCA having the most prominent inhibitory effect. In summary, this study reveals a possible hypoglycemic pathway of RRS metabolites and provides new research perspectives to further explore the therapeutic mechanism of bile acids in T2DM.

18.
Foods ; 13(7)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38611322

The chemical composition and nutritional content of garlic are greatly impacted by its production location, leading to distinct flavor profiles and functional properties among garlic varieties from diverse origins. Consequently, these variations determine the preference and acceptance among diverse consumer groups. In this study, purple-skinned garlic samples were collected from five regions in China: Yunnan, Shandong, Henan, Anhui, and Jiangsu Provinces. Mid-infrared spectroscopy and ultraviolet spectroscopy were utilized to analyze the components of garlic cells. Three preprocessing methods, including Multiple Scattering Correction (MSC), Savitzky-Golay Smoothing (SG Smoothing), and Standard Normalized Variate (SNV), were applied to reduce the background noise of spectroscopy data. Following variable feature extraction by Genetic Algorithm (GA), a variety of machine learning algorithms, including XGboost, Support Vector Classification (SVC), Random Forest (RF), and Artificial Neural Network (ANN), were used according to the fusion of spectral data to obtain the best processing results. The results showed that the best-performing model for ultraviolet spectroscopy data was SNV-GA-ANN, with an accuracy of 99.73%. The best-performing model for mid-infrared spectroscopy data was SNV-GA-RF, with an accuracy of 97.34%. After the fusion of ultraviolet and mid-infrared spectroscopy data, the SNV-GA-SVC, SNV-GA-RF, SNV-GA-ANN, and SNV-GA-XGboost models achieved 100% accuracy in both training and test sets. Although there were some differences in the accuracy of the four models under different preprocessing methods, the fusion of ultraviolet and mid-infrared spectroscopy data yielded the best outcomes, with an accuracy of 100%. Overall, the combination of ultraviolet and mid-infrared spectroscopy data fusion and chemometrics established in this study provides a theoretical foundation for identifying the origin of garlic, as well as that of other agricultural products.

19.
Nat Commun ; 15(1): 3205, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38615015

Defence against pathogens relies on intracellular nucleotide-binding, leucine-rich repeat immune receptors (NLRs) in plants. Hormone signaling including abscisic acid (ABA) pathways are activated by NLRs and play pivotal roles in defence against different pathogens. However, little is known about how hormone signaling pathways are activated by plant immune receptors. Here, we report that a plant NLR Sw-5b mimics the behavior of the ABA receptor and directly employs the ABA central regulator PP2C-SnRK2 complex to activate an ABA-dependent defence against viral pathogens. PP2C4 interacts with and constitutively inhibits SnRK2.3/2.4. Behaving in a similar manner as the ABA receptor, pathogen effector ligand recognition triggers the conformational change of Sw-5b NLR that enables binding to PP2C4 via the NB domain. This receptor-PP2C4 binding interferes with the interaction between PP2C4 and SnRK2.3/2.4, thereby releasing SnRK2.3/2.4 from PP2C4 inhibition to activate an ABA-specific antiviral immunity. These findings provide important insights into the activation of hormone signaling pathways by plant immune receptors.


Abscisic Acid , Signal Transduction , Inhibition, Psychological , Protein Domains , Hormones
20.
Reproduction ; 167(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614129

In brief: The mechanism underlying the accumulation of γδT cells in the decidua, which helps maintain maternal-fetal immunotolerance in early pregnancy, is unknown. This study reveals that DSC-derived RANKL upregulates ICAM-1 expression via the NF-κB pathway to enable γδT cell accumulation in the early decidua. Abstract: Decidual γδT (dγδT) cells help maintain maternal-fetal immunotolerance in early pregnancy. However, the mechanism underlying the accumulation of γδT cells in the decidua is unknown. Previous work showed that RANKL upregulated intercellular adhesion molecule 1 (ICAM-1) in decidual stromal cells (DSCs), and Rankl knockout mice had limited dγδT cell populations. In this study, we measured the expression levels of RANKL/RANK and ICAM-1 in DSCs, in addition to the integrins of ICAM-1 on dγδT cells, and the number of dγδT cells from patients with recurrent spontaneous abortion (RSA) and normal pregnant women in the first trimester. RSA patients showed significantly decreased RANKL/RANK and ICAM-1/CD11a signaling in decidua, and a decreased percentage of dγδT cells, which was positively correlated with DSC-derived RANKL and ICAM-1. Next, an in vitro adhesion experiment showed that the enhanced attraction of human DSCs to dγδT cells after RANKL overexpression was almost completely aborted by anti-ICAM-1. Furthermore, Rankl knockout mice showed a significant reduction in NF-κB activity compared with wild-type controls. Finally, we applied a selective NF-κB inhibitor named PDTC to validate the role of NF-κB in RANKL-mediated ICAM-1 upregulation. Taken together, our data show that DSC-derived RANKL upregulates ICAM-1 expression via the NF-κB pathway to enable γδT cell accumulation in the early decidua. A reduction in RANKL/ICAM-1 signaling in DSCs may result in insufficient accumulation of γδT cells in decidua and, in turn, RSA.


Decidua , Intercellular Adhesion Molecule-1 , NF-kappa B , RANK Ligand , Up-Regulation , Adult , Animals , Female , Humans , Mice , Pregnancy , Decidua/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Mice, Knockout , NF-kappa B/metabolism , RANK Ligand/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Signal Transduction , Stromal Cells/metabolism , T-Lymphocytes/metabolism
...