Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
2.
Cell ; 187(1): 44-61.e17, 2024 01 04.
Article En | MEDLINE | ID: mdl-38134932

Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1GoF) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1GoF expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPß was dependent on JAK1 in the vagus nerve, and CGRPß suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.


Dermatitis, Atopic , Immunity, Innate , Lung , Sensory Receptor Cells , Animals , Humans , Mice , Cytokines , Dermatitis, Atopic/immunology , Inflammation , Lung/immunology , Lymphocytes , Sensory Receptor Cells/enzymology
4.
Front Mol Neurosci ; 16: 1183315, 2023.
Article En | MEDLINE | ID: mdl-37692100

Introduction: Neurons transport mRNA and translational machinery to axons for local translation. After spinal cord injury (SCI), de novo translation is assumed to enable neurorepair. Knowledge of the identity of axonal mRNAs that participate in neurorepair after SCI is limited. We sought to identify and understand how axonal RNAs play a role in axonal regeneration. Methods: We obtained preparations enriched in axonal mRNAs from control and SCI rats by digesting spinal cord tissue with cold-active protease (CAP). The digested samples were then centrifuged to obtain a supernatant that was used to identify mRNA expression. We identified differentially expressed genes (DEGS) after SCI and mapped them to various biological processes. We validated the DEGs by RT-qPCR and RNA-scope. Results: The supernatant fraction was highly enriched for mRNA from axons. Using Gene Ontology, the second most significant pathway for all DEGs was axonogenesis. Among the DEGs was Rims2, which is predominately a circular RNA (circRNA) in the CNS. We show that Rims2 RNA within spinal cord axons is circular. We found an additional 200 putative circRNAs in the axonal-enriched fraction. Knockdown in primary rat cortical neurons of the RNA editing enzyme ADAR1, which inhibits formation of circRNAs, significantly increased axonal outgrowth and increased the expression of circRims2. Using Rims2 as a prototype we used Circular RNA Interactome to predict miRNAs that bind to circRims2 also bind to the 3'UTR of GAP-43, PTEN or CREB1, all known regulators of axonal outgrowth. Axonally-translated GAP-43 supports axonal elongation and we detect GAP-43 mRNA in the rat axons by RNAscope. Discussion: By enriching for axonal RNA, we detect SCI induced DEGs, including circRNA such as Rims2. Ablation of ADAR1, the enzyme that regulates circRNA formation, promotes axonal outgrowth of cortical neurons. We developed a pathway model using Circular RNA Interactome that indicates that Rims2 through miRNAs can regulate the axonal translation GAP-43 to regulate axonal regeneration. We conclude that axonal regulatory pathways will play a role in neurorepair.

5.
Elife ; 112022 Oct 07.
Article En | MEDLINE | ID: mdl-36205393

At CA1→subiculum synapses, alternatively spliced neurexin-1 (Nrxn1SS4+) and neurexin-3 (Nrxn3SS4+) enhance NMDA-receptors and suppress AMPA-receptors, respectively, without affecting synapse formation. Nrxn1SS4+ and Nrxn3SS4+ act by binding to secreted cerebellin-2 (Cbln2) that in turn activates postsynaptic GluD1 receptors. Whether neurexin-Cbln2-GluD1 signaling has additional functions besides regulating NMDA- and AMPA-receptors, and whether such signaling performs similar roles at other synapses, however, remains unknown. Here, we demonstrate using constitutive Cbln2 deletions in mice that at CA1→subiculum synapses, Cbln2 performs no additional developmental roles besides regulating AMPA- and NMDA-receptors. Moreover, low-level expression of functionally redundant Cbln1 did not compensate for a possible synapse-formation function of Cbln2 at CA1→subiculum synapses. In exploring the generality of these findings, we examined the prefrontal cortex where Cbln2 was recently implicated in spinogenesis, and the cerebellum where Cbln1 is known to regulate parallel-fiber synapses. In the prefrontal cortex, Nrxn1SS4+-Cbln2 signaling selectively controlled NMDA-receptors without affecting spine or synapse numbers, whereas Nrxn3SS4+-Cbln2 signaling had no apparent role. In the cerebellum, conversely, Nrxn3SS4+-Cbln1 signaling regulated AMPA-receptors, whereas now Nrxn1SS4+-Cbln1 signaling had no manifest effect. Thus, Nrxn1SS4+- and Nrxn3SS4+-Cbln1/2 signaling complexes differentially control NMDA- and AMPA-receptors in different synapses in diverse neural circuits without regulating synapse or spine formation.


Calcium-Binding Proteins , Neural Cell Adhesion Molecules , Receptors, AMPA , Receptors, N-Methyl-D-Aspartate , Animals , Mice , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , N-Methylaspartate/metabolism , Protein Precursors/genetics , Protein Precursors/metabolism , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology , Calcium-Binding Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism
6.
Diabetes ; 71(11): 2331-2343, 2022 11 01.
Article En | MEDLINE | ID: mdl-35926095

Melanocortin 4 receptor (MC4R) in the paraventricular nucleus of the hypothalamus (PVH) shows bidirectional characterization in modulating food intake and energy homeostasis. We demonstrate that MC4R knockdown (KD) in the PVH can attenuate AMPA receptor (AMPAR)-mediated postsynaptic responses by altering the phosphorylation of AMPAR GluA1 subunit through the protein kinase A (PKA)-dependent signaling cascade and simultaneously lead to rapid body weight gain. Furthermore, PKA KD in the PVH engendered similar electrophysiological and behavioral phenotypes as in MC4R KD mice. Importantly, we observed that the reduction of AMPAR GluA1 expression not only led to attenuated synaptic responses but also caused body weight gain, suggesting that the aberration of synaptic responses may be one of the crucial pathogeny of obesity. Our study provides the synaptic and molecular explanations of how body weight is regulated by MC4R in the PVH.


Obesity , Receptor, Melanocortin, Type 4 , Animals , Mice , Body Weight , Cyclic AMP-Dependent Protein Kinases/metabolism , Obesity/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Synaptic Transmission
7.
Nature ; 595(7866): 261-265, 2021 07.
Article En | MEDLINE | ID: mdl-34135511

Ionotropic glutamate delta receptors 1 (GluD1) and 2 (GluD2) exhibit the molecular architecture of postsynaptic ionotropic glutamate receptors, but assemble into trans-synaptic adhesion complexes by binding to secreted cerebellins that in turn interact with presynaptic neurexins1-4. It is unclear whether neurexin-cerebellin-GluD1/2 assemblies serve an adhesive synapse-formation function or mediate trans-synaptic signalling. Here we show in hippocampal synapses, that binding of presynaptic neurexin-cerebellin complexes to postsynaptic GluD1 controls glutamate receptor activity without affecting synapse numbers. Specifically, neurexin-1-cerebellin-2 and neurexin-3-cerebellin-2 complexes differentially regulate NMDA (N-methyl-D-aspartate) receptors and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors by activating distinct postsynaptic GluD1 effector signals. Of note, minimal GluD1 and GluD2 constructs containing only their N-terminal cerebellin-binding and C-terminal cytoplasmic domains, joined by an unrelated transmembrane region, fully control the levels of NMDA and AMPA receptors. The distinct signalling specificity of presynaptic neurexin-1 and neurexin-35,6 is encoded by their alternatively spliced splice site 4 sequences, whereas the regulatory functions of postsynaptic GluD1 are mediated by conserved cytoplasmic sequence motifs spanning 5-13 residues. Thus, GluDs are signalling molecules that regulate NMDA and AMPA receptors by an unexpected transduction mechanism that bypasses their ionotropic receptor architecture and directly converts extracellular neurexin-cerebellin signals into postsynaptic receptor responses.


Glutamate Dehydrogenase/metabolism , Receptors, Ionotropic Glutamate/metabolism , Signal Transduction , Amino Acid Motifs , Animals , Calcium-Binding Proteins/metabolism , Cell Membrane/metabolism , Excitatory Postsynaptic Potentials , Female , Male , Mice , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Protein Precursors/metabolism , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism
8.
Mol Psychiatry ; 26(12): 7509-7521, 2021 12.
Article En | MEDLINE | ID: mdl-34158618

Cerebellin-1 (Cbln1) and cerebellin-2 (Cbln2) are secreted glycoproteins that are expressed in distinct subsets of neurons throughout the brain. Cbln1 and Cbln2 simultaneously bind to presynaptic neurexins and postsynaptic GluD1 and GluD2, thereby forming trans-synaptic adhesion complexes. Genetic associations link cerebellins, neurexins and GluD's to neuropsychiatric disorders involving compulsive behaviors, such as Tourette syndrome, attention-deficit hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD). Extensive evidence implicates dysfunction of serotonergic signaling in these neuropsychiatric disorders. Here, we report that constitutive Cbln2 KO mice, but not Cbln1 KO mice, display robust compulsive behaviors, including stereotypic pattern running, marble burying, explosive jumping, and excessive nest building, and exhibit decreased brain serotonin levels. Strikingly, treatment of Cbln2 KO mice with the serotonin precursor 5-hydroxytryptophan or the serotonin reuptake-inhibitor fluoxetine alleviated compulsive behaviors. Conditional deletion of Cbln2 both from dorsal raphe neurons and from presynaptic neurons synapsing onto dorsal raphe neurons reproduced the compulsive behaviors of Cbln2 KO mice. Finally, injection of recombinant Cbln2 protein into the dorsal raphe of Cbln2 KO mice largely reversed their compulsive behaviors. Taken together, our results show that Cbln2 controls compulsive behaviors by regulating serotonergic circuits in the dorsal raphe.


Dorsal Raphe Nucleus , Nerve Tissue Proteins , Animals , Compulsive Behavior , Dorsal Raphe Nucleus/metabolism , Mice , Nerve Tissue Proteins/metabolism , Protein Precursors , Synapses/metabolism
9.
Mol Psychiatry ; 26(11): 6253-6268, 2021 11.
Article En | MEDLINE | ID: mdl-33931733

Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca2+ channels and induces long-term plasticity by decreasing cellular cAMP levels. Here we identified an unanticipated additional mechanism of acute cannabinoid signaling in presynaptic terminals that regulates the size of synaptic vesicle pools available for neurotransmitter release. Specifically, we show that activation of CB1Rs in human and mouse neurons rapidly recruits vesicles to nerve terminals by suppressing the cAMP-dependent phosphorylation of synapsins. We confirmed this unanticipated mechanism using conditional deletion of synapsin-1, the predominant synapsin isoform in human neurons, demonstrating that synapsin-1 significantly contributes to the CB1R-dependent regulation of neurotransmission. Interestingly, acute activation of the Gi-DREADD hM4D mimics the effect of CB1R activation in a synapsin-1-dependent manner, suggesting that the control of synaptic vesicle numbers by synapsin-1 phosphorylation is a general presynaptic mechanism of neuromodulation. Thus, we uncovered a CB1R-dependent presynaptic mechanism that rapidly regulates the organization and neurotransmitter release properties of synapses.


Cannabinoids , Synapsins , Animals , Cannabinoids/pharmacology , Humans , Mice , Receptors, Cannabinoid , Synapses/physiology , Synaptic Transmission/physiology , Synaptic Vesicles
10.
J Clin Invest ; 131(7)2021 04 01.
Article En | MEDLINE | ID: mdl-33539324

Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense, and missense variants in TSPOAP1, which encodes the active-zone RIM-binding protein 1 (RIMBP1), as a genetic cause of autosomal recessive dystonia in 7 subjects from 3 unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.


Adaptor Proteins, Signal Transducing , Alleles , Calcium Signaling , Dendrites/metabolism , Dystonic Disorders , Mutation, Missense , Purkinje Cells/metabolism , Synaptic Transmission , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Substitution , Animals , Dendrites/genetics , Dystonic Disorders/genetics , Dystonic Disorders/metabolism , Female , Humans , Male , Mice , Mice, Knockout
11.
Cell ; 179(2): 498-513.e22, 2019 10 03.
Article En | MEDLINE | ID: mdl-31585084

Neuromodulators bind to pre- and postsynaptic G protein-coupled receptors (GPCRs), are able to quickly change intracellular cyclic AMP (cAMP) and Ca2+ levels, and are thought to play important roles in neuropsychiatric and neurodegenerative diseases. Here, we discovered in human neurons an unanticipated presynaptic mechanism that acutely changes synaptic ultrastructure and regulates synaptic communication. Activation of neuromodulator receptors bidirectionally controlled synaptic vesicle numbers within nerve terminals. This control correlated with changes in the levels of cAMP-dependent protein kinase A-mediated phosphorylation of synapsin-1. Using a conditional deletion approach, we reveal that the neuromodulator-induced control of synaptic vesicle numbers was largely dependent on synapsin-1. We propose a mechanism whereby non-phosphorylated synapsin-1 "latches" synaptic vesicles to presynaptic clusters at the active zone. cAMP-dependent phosphorylation of synapsin-1 then removes the vesicles. cAMP-independent dephosphorylation of synapsin-1 in turn recruits vesicles. Synapsin-1 thereby bidirectionally regulates synaptic vesicle numbers and modifies presynaptic neurotransmitter release as an effector of neuromodulator signaling in human neurons.


Cyclic AMP-Dependent Protein Kinases/metabolism , Presynaptic Terminals/metabolism , Synapsins/metabolism , Synaptic Transmission , Synaptic Vesicles/metabolism , Animals , Cells, Cultured , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Neurotransmitter Agents/metabolism , Receptors, Neurotransmitter/metabolism , Signal Transduction
12.
Neuron ; 102(5): 993-1008.e5, 2019 06 05.
Article En | MEDLINE | ID: mdl-31005376

AMPA- and NMDA-type glutamate receptors mediate distinct postsynaptic signals that differ characteristically among synapses. How postsynaptic AMPA- and NMDA-receptor levels are regulated, however, remains unclear. Using newly generated conditional knockin mice that enable genetic control of neurexin alternative splicing, we show that in hippocampal synapses, alternative splicing of presynaptic neurexin-1 at splice site 4 (SS4) dramatically enhanced postsynaptic NMDA-receptor-mediated, but not AMPA-receptor-mediated, synaptic responses without altering synapse density. In contrast, alternative splicing of neurexin-3 at SS4 suppressed AMPA-receptor-mediated, but not NMDA-receptor-mediated, synaptic responses, while alternative splicing of neurexin-2 at SS4 had no effect on NMDA- or AMPA-receptor-mediated responses. Presynaptic overexpression of the neurexin-1ß and neurexin-3ß SS4+ splice variants, but not of their SS4- splice variants, replicated the respective SS4+ knockin phenotypes. Thus, different neurexins perform distinct nonoverlapping functions at hippocampal synapses that are independently regulated by alternative splicing. These functions transsynaptically control NMDA and AMPA receptors, thereby mediating presynaptic control of postsynaptic responses.


Alternative Splicing/genetics , Calcium-Binding Proteins/genetics , Hippocampus/metabolism , Nerve Tissue Proteins/genetics , Neural Cell Adhesion Molecules/genetics , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Animals , Calcium-Binding Proteins/metabolism , Gene Knock-In Techniques , Mice , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , RNA Splice Sites
13.
J Neurosci ; 35(26): 9632-7, 2015 Jul 01.
Article En | MEDLINE | ID: mdl-26134646

It is well known that voltage-gated calcium channels (VGCCs)-mediated Ca(2+) influx triggers evoked synaptic vesicle release. However, the mechanisms of Ca(2+) regulation of spontaneous miniature vesicle release (mini) remain poorly understood. Here we show that blocking VGCCs at the juvenile mice (C57BL/6) calyx of Held synapse failed to cause an immediate change in minis. Instead, it resulted in a significant reduction (∼40%) of mini frequency several minutes after the blockage. By recording VGCC activity and single vesicle fusion events directly at the presynaptic terminal, we found that minis did not couple to VGCC-mediated Ca(2+) entry, arguing for a lack of direct correlation between mini and transient Ca(2+) influx. Moreover, mini frequencies displayed a lower apparent Ca(2+) cooperativity than those of evoked release. In agreement with this observation, abrogation of the Ca(2+) sensor synaptotagmin-2 had no effect on apparent Ca(2+) cooperativity of minis. Together, our study provides the first direct evidence that spontaneous minis are not mediated by transient Ca(2+) signals through VGCCs and are triggered by a Ca(2+)-sensing mechanism that is different from the evoked release at these microdomain VGCC-vesicle coupled synapses.


Calcium Channels/metabolism , Calcium/metabolism , Synapses/physiology , Synaptic Vesicles/metabolism , Synaptotagmin II/metabolism , Animals , Animals, Newborn , Biophysics , Brain/cytology , Cadmium Chloride/pharmacology , Electric Stimulation , Female , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Patch-Clamp Techniques , Synapses/drug effects , Synaptic Vesicles/drug effects , Synaptotagmin II/genetics
...