Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 366: 121928, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029171

RESUMEN

Constructing a photocatalytic membrane and photo-Fenton reaction coupling system is a novel strategy to enhance the photocatalytic activity of the membrane and eliminate the problem of membrane contamination. Herein, a g-C3N4/Bi2MoO6/PVDF photocatalytic membrane was prepared using a tannic acid-assisted in-situ deposition method. The membrane was characterized by three advantages of photocatalytic, self-cleaning, and antibacterial properties. Under the photo-Fenton-like conditions, the membrane had superior photodegradation efficiency of 90.7% for tetracycline, one of the main antibiotic contaminants in the China's aquatic system. Moreover, the membrane had excellent photo-Fenton self-cleaning ability, its flux recovery rate was up to 96%-98% after the self-cleaning process. Photoluminescence spectra, diffuse UV-visible spectrum, transient photocurrent responses, and electrochemical AC impedance spectrum results show that the heterojunction structure formed by g-C3N4 and Bi2MoO6 could improve the separation efficiency of photogenerated electrons-hole pairs. Electron spin resonance spectroscopy confirmed the photo-electrons facilitated the formation of hydroxyl radical (·OH) in the existence of H2O2, which enhanced tetracycline degradation. Moreover, the superior photo-Fenton self-cleaning performance, which mainly relied on the active free radicals produced by the photo-Fenton-like membrane to remove dirt on the membrane surface or in the membrane pore channel. Our results may shed new light on the development of promising photocatalytic membrane systems by coupling with photo-Fenton-like processes, and facilitate their applications for wastewater treatment.

2.
Talanta ; 251: 123817, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35952498

RESUMEN

Overuse of antibiotics posed a global threat to human health and the ecological environment. Efficient detection and control of antibiotic pollution demand novel sensory materials. Here, a dual-luminescent material FS@UIO66 was successfully synthesized by encapsulating fluorescent molecules (fluorescein sodium, FS) in UIO66 based on the in-situ encapsulation method. We found that the dual emission peaks of FS@UIO66 at 369 and 515 nm can be sensitively and synchronously quenched by tetracycline (TET). Interestingly, these two peak intensities were switched anisotropically by levofloxacin (LEV), in which the signal at 515 nm was enhanced. Photophysical analysis revealed that there may exist a competition and replenishment mechanism in the sensing processes. The ratiometric fluorescent feature was employed for rapid detection of TET and LEV, with detection limits of 0.2444 µM and 0.2808 µM for TET and LEV, respectively. The superior sensitivity, high selectivity, and excellent recyclability of FS@UIO66 in sensing TET and LEV were demonstrated in this work. In addition, TET and LEV were also successfully detected by FS@UIO66 in water from real water environment. The results indicate that FS@UIO66 composites are favorable for TET and LEV detection, presenting a great sensing platform for antibiotic detection.


Asunto(s)
Antibacterianos , Agua , Fluoresceína , Colorantes Fluorescentes , Humanos , Levofloxacino , Tetraciclina
3.
Polymers (Basel) ; 14(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36236193

RESUMEN

Graphene-based membranes have unique nanochannels and can offer advantageous properties for the water desalination process. Although tremendous efforts have been devoted to heightening membrane performance and broadening their application, there is still lack of a systematic literature review on the development and future directions of graphene-based membranes for desalination. In this mini-review, literature published between 2011 and 2022 were analyzed by using the bibliometric method. We found that the major contributors to these publications and the highest citations were from China and the USA. Nearly 80% of author keywords in this analysis were used less than twice, showing the broad interest and great dispersion in this field. The recent advances, remaining gaps, and strategies for future research, were discussed. The development of new multifunctional nanocomposite materials, heat-driven/solar-driven seawater desalination, and large-scale industrial applications, will be important research directions in the future. This literature analysis summarized the recent development of the graphene-based membranes for desalination application, and will be useful for researchers in gaining new insights into this field.

4.
Polymers (Basel) ; 14(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080584

RESUMEN

Metal-organic frameworks (MOFs) have the advantages of tunable pore sizes and porosity and have demonstrated unique advantages for various applications. This study synthesized composite MOF nanomaterials by modifying MOF801 or AlOOH with UIO66. The composite nanomaterials, UIO66/MOF801 and UIO66/AlOOH showed increased Zeta potential than their pristine form, AlOOH, UIO66 and MOF801. For the first time, the composite MOFs were used to fabricate filter paper-based evaporation-driven power generators for spontaneous electricity generation. The MOFs-KBF membrane was constructed by coating filter paper (10 × 50 mm) with composite MOFs and conductive Ketjen Black. The UIO66/MOF801 decorated device achieved a maximum open circuit voltage of 0.329 ± 0.005 V and maximum output power of 2.253 µW. The influence of salt concentration (0.1-0.5 M) on power generation was also analyzed and discussed. Finally, as a proof-of-concept application, the device was employed as a salinity sensor to realize remote monitoring of salinity. This work demonstrated the potential of flexible MOF composites for spontaneous power generation from water evaporation and provides a potential way to enhance the performance of evaporation-driven power generators.

5.
Water Res ; 222: 118920, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35964510

RESUMEN

Microplastics (MPs) are increasingly entering the urban aquatic ecosystems, and the environmental significance and health risks of plastisphere, a special biofilm on MPs, have received widespread attention. In this study, MPs of polylactic acid (PLA) and polyvinyl chloride (PVC) and quartzite were incubated in an urban water environment, and the tetracycline (TC) degradation ability was compared. Approximatedly 24% of TC biodegraded in 28 d in the water-quartzite system, which is significantly higher than that in the water-PLA (17.3%) and water-PVC systems (16.7%). Re-incubation of microorganisms in biofilms affirmed that quartzite biofilm has a higher TC degradation capacity than the plastisphere. According to high-throughput sequencing of 16S rRNA and metagenomic analysis, quartzite biofilm contained more abundant potential TC degrading bacteria, genes related to TC degradation (eutG, aceE, and DLAT), and metabolic pathways related to TC degradation. An oligotrophic environment on the quartzite surface might lead to the higher metabolic capacity of quartzite biofilm for unconventional carbons, e.g., TC. It is also found that, compared with quartzite biofilm, the distinct microbes in the plastisphere carried more antibiotic resistance genes (ARGs). Higher affinity of MPs surface to antibiotics may lead to higher antibiotics stress on the plastisphere, which further amplify the carrying capacity for ARGs of microorganisms in the plastisphere. Compared to the nondegradable PVC MPs, surface of the biodegradable PLA plastics harbored significantly higher amounts of biomass and ARGs. Compared to the mineral particles, the capability of plastisphere has lower ability to degrade unconventional carbon sources such as the refractory organic pollutants, due to the abundance of carbon sources (adsorbed organic carbon and endogenous organic carbon) on the MPs surface. Meanwhile, the stronger adsorption capacity for pollutants also leads to higher pollutant stress (such as antibiotic stress) in plastisphere, which in turn affects the microbiological characteristics of the plastisphere itself, such as carrying more ARGs.


Asunto(s)
Contaminantes Ambientales , Plásticos , Antibacterianos , Carbono , Ecosistema , Microplásticos , Poliésteres , Cloruro de Polivinilo , ARN Ribosómico 16S/genética , Tetraciclina , Agua
6.
Chemosphere ; 289: 133186, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34883132

RESUMEN

Produced water (PW) is the main waste produced by oil and gas industry, and its treatment represents an environmental and economical challenge for governments and the industry itself. Microbial fuel cells (MFC) emerge as an ecofriendly technology able to harvest energy and remove pollutants at the same time, however high internal resistance is a key problem limiting their operating performance and practical application. In this work, a novel continuous up-flow MFC was designed and fed solely using PW under different flowrates. Effects of the different flowrates (0 mL/s, 0.2 mL/s, 0.4 mL/s, and 0.6 mL/s) in power production performance and pollutants removal were analyzed. Our results demonstrated the removal efficiency of all the pollutants improved when flowrate incremented from 0 to 0.4 mL/s (COD: 96%, TDS: 22%, sulfates: 64%, TPH: 89%), but decreased when 0.6 mL/s was applied. The best power density of 227 mW/m2 was achieved in a flowrate of 0.4 mL/s. Similar to the pollutant's removal, the power density increased together with the increment of flowrate and decreased when 0.6 mL/s was used. The reason for the performance fluctuation was the decrement of internal resistance from 80 Ω (batch mode) to 20 Ω (0.4 mL/s), and then the sudden increment to 90 Ω for 0.6 mL/s. A flow simulation revealed that until 0.4 mL/s the flow was organized and helped protons to arrive in the membrane faster, but flowrate of 0.6 mL/s created turbulence which prejudiced the transportation of protons incrementing the internal resistance. Microbial community analysis of the biofilm found that Desulfuromonas, Desulfovibrio and Geoalkalibacter were dominant bacteria in charge of pollutant removal and electricity production. This study can be helpful in guiding the use of continuous-flow MFC for PW treatment, and to accelerate the practical application of MFC technology in oil industry.


Asunto(s)
Fuentes de Energía Bioeléctrica , Microbiota , Electricidad , Electrodos , Aguas Residuales/análisis , Agua
7.
Chemosphere ; 285: 131530, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34273692

RESUMEN

A vertically configured photocatalytic-microbial fuel cell (photo-MFC) is developed by combining a nanodiamond-decorated ZnO (ZnO/ND) photocathode with a bioanode. The system can effectively couple the light energy with bioenergy to enhance the degradation of volatile organic compounds (VOCs) and boost electricity output. Results show that the composite system exhibits increased performance for toluene removal (60.65%), higher than those of individual parts (ZnO/ND-photocatalysis: 37.16%, MFC: 17.81%). Furthermore, its electrochemical performance is dramatically increased. The peak power density of 120 mW/m2 and the current density of 1.07 A/m2 are generated under light illumination, which are about 1.57-fold and 1.37-fold higher than that under dark (76 mW/m2, 0.78 A/m2), respectively. Microbial community analysis demonstrates Proteobacteria and Firmicute are dominant phyla, implying they play important roles on accelerating the extracellular-electron transfer and toluene degradation. In addition, the underlying mechanism for toluene degradation in the photo-MFC system is preliminary explored. Our results suggest that the photo-MFC has great potential for simultaneous treatment of VOCs with energy recovery.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electricidad , Electrodos , Gases , Tolueno
8.
Chemosphere ; 285: 131428, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34237499

RESUMEN

Disposal of the high volume of produced water (PW) is a big challenge to the oil and gas industry. High cost of conventional treatment facilities, increasing energy prices and environmental concern had focused governments and the industry itself on more efficient treatment methods. Bioelectrochemical system (BES) has attracted the attention of researchers because it represents a sustainable way to treat wastewater. This is the first review that summarizes the progress done in PW-fed BESs with a critical analysis of the parameters that influence their performances. Inoculum, temperature, hydraulic retention time, external resistance, and the use of real or synthetic produced water were found to be deeply related to the performance of BES. Microbial fuel cells are the most analyzed BES in this field followed by different types of microbial desalination cells. High concentration of sulfates in PW suggests that most of hydrocarbons are removed mainly by using sulfates as terminal electron acceptor (TEA), but other TEAs such as nitrate or metals can also be employed. The use of real PW as feed in experiments is highly recommended because biofilms when using synthetic PW are not the same. This review is believed to be helpful in guiding the research directions on the use of BES for PW treatment, and to speed up the practical application of BES technology in oil and gas industry.


Asunto(s)
Fuentes de Energía Bioeléctrica , Agua , Industria del Petróleo y Gas , Tecnología , Aguas Residuales/análisis
9.
Front Microbiol ; 12: 652520, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967988

RESUMEN

Microplastics (MPs), tiny particles broken down from larger pieces of plastics, have accumulated everywhere on the earth. As an inert carbon stream in aquatic environment, they have been reported as carriers for heavy metals and exhibit diverse interactive effects. However, these interactions are still poorly understood, especially mechanisms driving these interactions and how they pose risks on living organisms. In this mini review, a bibliometric analysis in this field was conducted and then the mechanisms driving these interactions were examined, especially emphasizing the important roles of microorganisms on the interactions. Their combined toxic effects and the potential hazards to human health were also discussed. Finally, the future research directions in this field were suggested. This review summarized the recent research progress in this field and highlighted the essential roles of the microbes on the interactions between MPs and heavy metals with the hope to promote more studies to unveil action mechanisms and reduce/eliminate the risks associated with MP presence.

10.
Nanomaterials (Basel) ; 11(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466815

RESUMEN

In this work, reduced graphene oxide (rGO) nanocomposites doped with nitrogen (N), sulfur (S) and transitional metal (Ni, Co, Fe) were synthesized by using a simple one-step in-situ hydrothermal approach. Electrochemical characterization showed that rGO-NS-Ni was the most prominent catalyst for glucose oxidation. The current density of the direct glucose alkaline fuel cell (DGAFC) with rGO-NS-Ni as the anode catalyst reached 148.0 mA/cm2, which was 40.82% higher than the blank group. The DGAFC exhibited a maximum power density of 48 W/m2, which was more than 2.08 folds than that of blank group. The catalyst was further characterized by SEM, XPS and Raman. It was speculated that the boosted performance was due to the synergistic effect of N, S-doped rGO and the metallic redox couples, (Ni2+/Ni3+, Co2+/Co3+ and Fe2+/Fe3+), which created more active sites and accelerated electron transfer. This research can provide insights for the development of environmental benign catalysts and promote the application of the DGAFCs.

11.
Biotechnol Appl Biochem ; 67(6): 824-834, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33146902

RESUMEN

Genome engineering and synthetic biology as an emerging interdisciplinary tool have opened a new era for energy research as well as life science. In this study, bibliometric and content analysis were conducted to clarify research characteristics and research trends in this field. Our result revealed that USA, China, UK, Germany, and France were the main contributing countries, and USA was in a leading position in international cooperation. The CRISPR-Cas9 system has been manipulated to develop microorganisms with improved characteristics and tolerance, and is at the forefront of research and practice. In addition, design and construction of synthetic microbial communities and optimization of ecological models to meet industrial demands will become the next hotspot. Meanwhile, effective process configurations that can promote commercial-scale biofuel production should also be developed. Genome engineering and synthetic biology are expected to continue playing an important role in promoting the development of sustainable energy production.


Asunto(s)
Bibliometría , Biocombustibles , Ingeniería Metabólica , Microbiota , Modelos Biológicos , Biología Sintética
12.
Sci Total Environ ; 741: 140463, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32886986

RESUMEN

Microplastics (MPs) have become a global environmental concern while soil plastic pollution has been largely overlooked. In view of the severe antibiotic contamination in arable soils owing to land application of sewage sludge and animal manure, the invasion of MPs along with antibiotics may pose an unpredictable threat to soil microbial communities and ecological health. In this work, polyethylene MPs and ciprofloxacin (CIP) were applied to a soil microcosm to investigate the CIP degradation behavior and their combined effects on soil microbial communities. Compared with that of the individual amendment of CIP, the co-amendment of CIP and MPs reduced the CIP degradation efficiency during the 35 d cultivation period. In addition, the high-throughput sequencing results illustrated that the combined loading of MPs and CIP in soil significantly decreased the microbial diversity compared with that of individual contamination. As for the community structure, the microbial compositions at the phylum level were consistent among all treatments, and the most dominant phyla were Proteobacteria, Actinobacteria, and Chloroflexi. At the genus level, only one genus, namely Arthrobacter, was remarkably changed in the CIP-amended soil compared with that in the blank control, but four genera were significantly altered in the MPs-CIP co-amended soil. Serratia and Achromobacter were abundant in the combined polluted soil, which might have been involved in accelerated depletion of soil total nitrogen based on redundancy analysis. These findings may contribute to the understanding of bacterial responses to the combined pollution of MPs and antibiotics in soil ecosystems.


Asunto(s)
Microbiota , Contaminantes del Suelo/análisis , Animales , Antibacterianos , Ciprofloxacina/análisis , Microplásticos , Plásticos , Polietileno , Suelo , Microbiología del Suelo
13.
RSC Adv ; 10(43): 25874-25887, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35518611

RESUMEN

The development of microbial fuel cell (MFC) makes it possible to generate clean electricity as well as remove pollutants from wastewater. Extensive studies on MFC have focused on structural design and performance optimization, and tremendous advances have been made in these fields. However, there is still a lack of systematic analysis on biocatalysts used in MFCs, especially when it comes to pollutant removal and simultaneous energy recovery. In this review, we aim to provide an update on MFC-based wastewater treatment and energy harvesting research, and analyze various biocatalysts used in MFCs and their underlying mechanisms in pollutant removal as well as energy recovery from wastewater. Lastly, we highlight key future research areas that will further our understanding in improving MFC performance for simultaneous wastewater treatment and sustainable energy harvesting.

14.
Environ Sci Pollut Res Int ; 26(3): 2477-2491, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30471061

RESUMEN

The ultrasonic-assisted hydrothermal and ethanol activation method was proposed to synthesize copper-benzene-1,3,5-tricarboxylate (Cu-BTC) metal organic framework and Cu-BTC/graphene oxide (GO) composites (Cu-BTC@GO). The dynamic adsorption behavior of toluene on two adsorbents was studied and compared with that of GO and reduced graphene oxide (RGO). The Cu-BTC@GO exhibited high adsorption capacity (183 mg/g) for toluene, which is nearly three times as much as that of Cu-BTC (62.7 mg/g) with the GO mass fraction of 20%. Furthermore, the adsorption of toluene on Cu-BTC@GO composites was positively correlated with the initial concentration of toluene and the adsorbent dosage, and negatively correlated with the temperature. The adsorption data of toluene on Cu-BTC@GO composites were well in accordance with pseudo-first kinetics model. Langmuir model had a better fit than Freundlich model. The adsorption thermodynamic results showed that the adsorption process was mainly physical adsorption and the adsorption process was spontaneous at low temperature. After five adsorption-desorption cycles, the adsorption efficiency can still reach 82.1%.This study will help to draw a promising roadmap to describe the adsorption performance of Cu-BTC@GO composites for toluene.


Asunto(s)
Benceno/química , Cobre/química , Grafito/química , Estructuras Metalorgánicas/química , Óxidos/química , Adsorción , Gases/química , Cinética , Temperatura , Termodinámica , Tolueno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA