Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Aging Dis ; 14(3): 966-991, 2023 Jun 01.
Article En | MEDLINE | ID: mdl-37191423

Modulators of the sphingosine-1-phosphate receptor (S1PR) have been proposed as a promising strategy for treating stroke. However, the detailed mechanisms and the potential translational value of S1PR modulators for intracerebral hemorrhage (ICH) therapy warrant exploration. Using collagenase VII-S-induced ICH in the left striatum of mice, we investigated the effects of siponimod on cellular and molecular immunoinflammatory responses in the hemorrhagic brain in the presence or absence of anti-CD3 monoclonal antibodies (Abs). We also assessed the severity of short- and long-term brain injury and evaluated the efficacy of siponimod in long-term neurologic function. Siponimod treatment significantly decreased brain lesion volume and brain water content on day 3 and the volume of the residual lesion and brain atrophy on day 28. It also inhibited neuronal degeneration on day 3 and improved long-term neurologic function. These protective effects may be associated with a reduction in the expression of lymphotactin (XCL1) and T-helper 1 (Th1)-type cytokines (interleukin 1ß and interferon-γ). It may also be associated with inhibition of neutrophil and lymphocyte infiltration and alleviation of T lymphocyte activation in perihematomal tissues on day 3. However, siponimod did not affect the infiltration of natural killer cells (NK) or the activation of CD3-negative immunocytes in perihematomal tissues. Furthermore, it did not influence the activation or proliferation of microglia or astrocytes around the hematoma on day 3. Siponimod appears to have a profound impact on infiltration and activation of T lymphocytes after ICH. The effects of neutralized anti-CD3 Abs-induced T-lymphocyte tolerance on siponimod immunomodulation further confirmed that siponimod alleviated the cellular and molecular Th1 response in the hemorrhagic brain. This study provides preclinical evidence that encourages future investigation of immunomodulators, including siponimod, which target the lymphocyte-related immunoinflammatory reaction in ICH therapy.

2.
Oxid Med Cell Longev ; 2022: 1599747, 2022.
Article En | MEDLINE | ID: mdl-35242275

Trimethylamine-N-oxide (TMAO), an intestinal flora metabolite of choline, may aggravate atherosclerosis by inducing a chronic inflammatory response and thereby promoting the occurrence of cerebrovascular diseases. Knowledge about the influence of TMAO-related inflammatory response on the pathological process of acute stroke is limited. This study was designed to explore the effects of TMAO on neuroinflammation, brain injury severity, and long-term neurologic function in mice with acute intracerebral hemorrhage (ICH). We fed mice with either a regular chow diet or a chow diet supplemented with 1.2% choline pre- and post-ICH. In this study, we measured serum levels of TMAO with ultrahigh-performance liquid chromatography-tandem mass spectrometry at 24 h and 72 h post-ICH. The expression level of P38-mitogen-protein kinase (P38-MAPK), myeloid differentiation factor 88 (MyD88), high-mobility group box1 protein (HMGB1), and interleukin-1ß (IL-1ß) around hematoma was examined by western blotting at 24 h. Microglial and astrocyte activation and neutrophil infiltration were examined at 72 h. The lesion was examined on days 3 and 28. Neurologic deficits were examined for 28 days. A long-term choline diet significantly increased serum levels of TMAO compared with a regular diet at 24 h and 72 h after sham operation or ICH. Choline diet-induced high serum levels of TMAO did not enhance the expression of P38-MAPK, MyD88, HMGB1, or IL-1ß at 24 h. However, it did increase the number of activated microglia and astrocytes around the hematoma at 72 h. Contrary to our expectations, it did not aggravate acute or long-term histologic damage or neurologic deficits after ICH. In summary, choline diet-induced high serum levels of TMAO increased the cellular inflammatory response probably by activating microglia and astrocytes. However, it did not aggravate brain injury or worsen long-term neurologic deficits. Although TMAO might be a potential risk factor for cerebrovascular diseases, this exploratory study did not support that TMAO is a promising target for ICH therapy.


Astrocytes/metabolism , Brain Injuries/blood , Brain Injuries/complications , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/complications , Choline/adverse effects , Diet/adverse effects , Methylamines/blood , Microglia/metabolism , Signal Transduction/drug effects , Acute Disease , Animals , Brain Injuries/microbiology , Cerebral Hemorrhage/microbiology , Disease Models, Animal , Gastrointestinal Microbiome , Inflammation/blood , Inflammation/chemically induced , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophil Infiltration/drug effects , Neutrophils/immunology , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Microsc Microanal ; 27(1): 36-43, 2021 Feb.
Article En | MEDLINE | ID: mdl-33455617

The microstructure and texture evolution of Ni-5 at%W (Ni5W) alloy substrates were investigated by in situ tensile testing along the rolling direction (RD), transverse direction (TD), and at 45° to the RD (45°-RD), as well as by electron backscatter diffraction characterization. The tensile stress direction had a significant influence on the texture evolution. The cubic texture in the Ni-5 at%W alloy exhibited severe degradation when the tensile angle was 45°-RD. In contrast, the cubic texture was relatively stable under high deformation along the RD or TD. It was found that the slip line system in the 45°-RD specimen was the key to the contrasting behavior. The effect of the tensile testing angle on the cubic texture evolution for Ni­W substrates was investigated, and the corresponding effect on the superconducting properties of coated materials was studied.

...