Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Int J Mol Sci ; 24(14)2023 Jul 11.
Article En | MEDLINE | ID: mdl-37511060

Adipocytes play a critical role in maintaining a healthy systemic metabolism by storing and releasing energy in the form of fat and helping to regulate glucose and lipid levels in the body. Adipogenesis is the process through which pre-adipocytes are differentiated into mature adipocytes. It is a complex process involving various transcription factors and signaling pathways. The dysregulation of adipogenesis has been implicated in the development of obesity and metabolic disorders. Therefore, understanding the mechanisms that regulate adipogenesis and the factors that contribute to its dysregulation may provide insights into the prevention and treatment of these conditions. RNA-binding motif single-stranded interacting protein 1 (RBMS1) is a protein that binds to RNA and plays a critical role in various cellular processes such as alternative splicing, mRNA stability, and translation. RBMS1 polymorphism has been shown to be associated with obesity and type 2 diabetes, but the role of RBMS1 in adipose metabolism and adipogenesis is not known. We show that RBMS1 is highly expressed during the early phase of the differentiation of the murine adipocyte cell line 3T3-L1 and is significantly upregulated in the adipose tissue depots and adipocytes of high-fat-fed mice, implying a possible role in adipogenesis and adipose metabolism. Knockdown of RBMS1 in pre-adipocytes impacted the differentiation process and reduced the expression of some of the key adipogenic markers. Transcriptomic and proteomic analysis indicated that RBMS1 depletion affected the expression of several genes involved in major metabolic processes, including carbohydrate and lipid metabolism. Our findings imply that RBMS1 plays an important role in adipocyte metabolism and may offer novel therapeutic opportunity for metabolic disorders such as obesity and type 2 diabetes.


Adipocytes , Adipogenesis , Animals , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipogenesis/genetics , Cell Differentiation/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Lipid Metabolism/genetics , Obesity/metabolism , Proteomics , Transcriptome
2.
Cells ; 12(3)2023 01 19.
Article En | MEDLINE | ID: mdl-36766718

G protein-coupled receptors (GPCRs) are expressed essentially on all cells, facilitating cellular responses to external stimuli, and are involved in nearly every biological process. Several members of this family play significant roles in the regulation of adipogenesis and adipose metabolism. However, the expression and functional significance of a vast number of GPCRs in adipose tissue are unknown. We used a high-throughput RT-PCR panel to determine the expression of the entire repertoire of non-sensory GPCRs in mouse white, and brown adipose tissue and assess changes in their expression during adipogenic differentiation of murine adipocyte cell line, 3T3-L1. In addition, the expression of GPCRs in subcutaneous adipose tissues from lean, obese, and diabetic human subjects and in adipocytes isolated from regular chow and high-fat fed mice were evaluated by re-analyzing RNA-sequencing data. We detected a total of 292 and 271 GPCRs in mouse white and brown adipose tissue, respectively. There is a significant overlap in the expression of GPCRs between the two adipose tissue depots, but several GPCRs are specifically expressed in one of the two tissue types. Adipogenic differentiation of 3T3-L1 cells had a profound impact on the expression of several GPCRs. RNA sequencing of subcutaneous adipose from healthy human subjects detected 255 GPCRs and obesity significantly changed the expression of several GPCRs in adipose tissue. High-fat diet had a significant impact on adipocyte GPCR expression that was similar to human obesity. Finally, we report several highly expressed GPCRs with no known role in adipose biology whose expression was significantly altered during adipogenic differentiation, and/or in the diseased human subjects. These GPCRs could play an important role in adipose metabolism and serve as a valuable translational resource for obesity and metabolic research.


Adipocytes , Obesity , Humans , Mice , Animals , Adipocytes/metabolism , Obesity/metabolism , Cell Differentiation/genetics , Adipose Tissue, Brown/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
3.
Curr Vasc Pharmacol ; 20(4): 361-369, 2022.
Article En | MEDLINE | ID: mdl-35249492

BACKGROUND: Familial hypercholesterolemia (FH) is a common illness mainly caused by variants occurring in the low-density lipoprotein receptor (LDLR) gene. FH is a leading cause of coronary artery disease. OBJECTIVE: This study aims to determine genetic defect(s) in homozygous and heterozygous FH index patients and their first-degree blood relatives and understand the genotype-phenotype correlation. METHODS: This study employed the genetic screening of FH-related genes by next-generation sequencing and cascade screening by capillary sequencing. RESULTS: We identified the presence of a novel frameshift variant [c.335_336insCGAG, p.(F114Rfs*17)] and three known missense variants [c.622G>A, p.(E208K)], [c.1474G>A, p.(D492N)], [c.1429G>A, p.(D477N)] in the LDLR gene of four unrelated Saudi families with FH. In proband 1, a nonsense variant c.1421C>G, p.(S474*) was also detected at exon 9 of the lipoprotein lipase gene. The segregation arrangement of the identified variants corresponded with the clinical characteristics. In this study, all the detected variants were confined in the ligand-binding domain and epidermal growth factor (EGF)-precursor homology domain of the LDLR protein, which portrayed severe clinical phenotypes of FH. Moreover, these LDLR variants were in a highly conserved residue of the proteins. CONCLUSION: In addition to the finding of the novel variant in the LDLR gene that extends the spectrum of variants causing FH, the results of this study also support the need for diagnostic screening and cascade genetic testing of this high-risk condition and to understand the genotype-phenotype correlation, which could lead to better prevention of coronary artery disease.


Coronary Artery Disease , Hyperlipoproteinemia Type II , Humans , Coronary Artery Disease/diagnosis , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Saudi Arabia/epidemiology , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/genetics , Receptors, LDL/genetics , Receptors, LDL/chemistry , Homozygote , Phenotype , Mutation
4.
Cells ; 11(4)2022 02 21.
Article En | MEDLINE | ID: mdl-35203397

Fatty acids (FFAs) are important biological molecules that serve as a major energy source and are key components of biological membranes. In addition, FFAs play important roles in metabolic regulation and contribute to the development and progression of metabolic disorders like diabetes. Recent studies have shown that FFAs can act as important ligands of G-protein-coupled receptors (GPCRs) on the surface of cells and impact key physiological processes. Free fatty acid-activated receptors include FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), and FFAR4 (GPR120). FFAR2 and FFAR3 are activated by short-chain fatty acids like acetate, propionate, and butyrate, whereas FFAR1 and FFAR4 are activated by medium- and long-chain fatty acids like palmitate, oleate, linoleate, and others. FFARs have attracted considerable attention over the last few years and have become attractive pharmacological targets in the treatment of type 2 diabetes and metabolic syndrome. Several lines of evidence point to their importance in the regulation of whole-body metabolic homeostasis including adipose metabolism. Here, we summarize our current understanding of the physiological functions of FFAR isoforms in adipose biology and explore the prospect of FFAR-based therapies to treat patients with obesity and Type 2 diabetes.


Adipose Tissue , Diabetes Mellitus, Type 2 , Fatty Acids, Nonesterified , Receptors, G-Protein-Coupled , Adipose Tissue/metabolism , Fatty Acids, Nonesterified/metabolism , Humans , Ligands , Obesity , Receptors, G-Protein-Coupled/metabolism
5.
Oncol Lett ; 20(6): 384, 2020 Dec.
Article En | MEDLINE | ID: mdl-33193845

Molecular pathology and personalized medicine are still being evolved in Saudi Arabia, and genetic testing for the detection of mutations as cancer markers have not been established in the diagnostics laboratories in Saudi Arabia. The aim of the present study was to determine the prevalence of isocitrate dehydrogenase (IDH1 and IDH2) mutations and epidermal growth factor receptor variant (EGFRv)III transcript expression in Saudi Arabian patients with glioma. Out of 117 brain tumors tested by reverse transcription-quantitative PCR for EGFRvIII, 41 cases tested positive. In the glioblastoma (GBM) category, 28/55 tumors were positive, in astrocytoma tumors 5/22, and in oligodendrogliomas 4/13 cases were positive respectively. EGFRvIII transcript was sequenced by capillary electrophoresis to demonstrate the presence of EGFRvIII-specific junction where exons 2-7 were deleted. In the present study 106 tumors were sequenced for IDH1 exon-4 mutations using the capillary sequencing method. The most common substitution missense mutation c.395G>A was found in 16 tumors. In the case of adamantinomatous craniopharyngioma, a novel missense mutation in c.472C>T was detected in IDH2 gene. Using next-generation sequencing (NGS), 74 tumors were sequenced for the IDH1 gene, and a total of 8 missense variants were identified in 36 tumors in a population of Saudi Arabia. The missense mutation (c.395G>A) was detected in 29/36 of tumors. A novel intronic mutation in c.414+9T>A was found in 13 cases in the IDH1 gene. In addition, one case exhibited a novel synonymous mutation in c.369A>G. Eleven tumors were found to have compound mutations in the IDH1 gene. In IDH2 gene, out of a total of 16 variants found in 6 out of 45 tumors, nine were missense, five were synonymous and one was intronic. This is the first report from Saudi Arabian laboratories analyzing glioma tumors for EGFRvIII expression, and the first study from Saudi Arabia to analyze IDH mutations in gliomas using the capillary and NGS methods.

6.
Front Genet ; 11: 548559, 2020.
Article En | MEDLINE | ID: mdl-33384710

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders. Several studies have confirmed the co-existence of other neuropsychiatric disorders with ADHD. Out of 106 individuals suspected to have ADHD, eight Saudi Arabian pediatric patients were diagnosed with ADHD using a dual assessment procedure based on highly significant scores from the international criteria for diagnosis; (full form DMS) DSM-5. Then, these patients were examined for the co-existence of autism and ADHD using different international diagnostic protocols. Four patients with combined ADHD and autism and four ADHD patients without autism were examined for the presence of genetic variants. Six variants (chr1:98165091, chr6:32029183, chr6:32035603, chr6:32064098, chr8:2909992, chr16:84213434) were identified in 75% of the patients with ADHD and autism, indicating that these genes may have a possible role in causing autism. Five variants (The chr2:116525960, chr15:68624396, chr15:91452595, chr15:92647645, and chr16:82673047) may increase to the severity of ADHD. This study recommends screening these eleven variants in ADHD cases and their relevant controls to confirm the prevalence in the Saudi population. It is recommended that future studies examine the 11 variants in detail.

7.
Middle East J Dig Dis ; 11(3): 166-173, 2019 Jul.
Article En | MEDLINE | ID: mdl-31687116

Anorectal melanomas are exceptionally uncommon and only 30% of anorectal melanomas are amelanotic. We report here a case of an anorectal amelanotic melanoma in a female patient. An 84-year-old patient complained of anal mass for 3 months. On examination, there was a 7.0 cm mass prolapsing through the anus that was pale-pink in color. Abdominal, pelvic, and chest computed tomography (CT) showed rectal wall thickening with an eccentric polypoid soft tissue density mass, and left inguinal and presacral lymph node enlargement along with a small nodule in the lower lobe of the left lung, likely representing metastatic deposit. Microscopic examination revealed a piece of skin with hyperplastic squamous epithelium with surface ulceration. The dermis and underlining tissue were showing infiltration by malignant sheets and nests of ovoid and spindle shape cells with prominent nucleolus and high mitotic s. Immuno-staining for HMB-45, S-100, and Melan-A was positive, and it was negative for P63, CK 5/6, and Pan-CK, thus confirming it as an anorectal amelanotic melanoma, and not an epithelial tumor. This is the first case of an amelanotic anorectal melanoma reported from Saudi Arabia.

8.
Oncol Lett ; 18(5): 5063-5076, 2019 Nov.
Article En | MEDLINE | ID: mdl-31612017

Choroid plexus papilloma (CPP) is a rare benign tumor of the central nervous system that is usually confined to the cerebral ventricles. According to the World Health Organization, CPP corresponds to a grade I atypical CPP (a-CPP); however, it can become more aggressive and reach grade II, which can rarely undergo malignant transformation into a choroid plexus carcinoma (grade III). To the best of our knowledge, identification of these tumors mutations by next generation DNA sequencing (NGS) has not been yet reported. In the present study, NGS analysis of an a-CPP case was performed. Data were analyzed using Advaita Bioinformatics i-VariantGuide and Ion Reporter 5.6 programs. The results from NGS identified 12 novel missense mutations in the following genes: NOTCH1, ATM, STK36, MAGI1, DST, RECQL4, NUMA1, THBS1, MYH11, MALT1, SMARCA4 and CDH20. The PolyPhen score of six variants viz., DST, RECQL4, NUMA1, THBS1, MYHI1 and SMARCA4 were high, which suggested these variants represents pathogenic variants. Two novel insertions that caused frameshift were also found. Furthermore, two novel nonsense mutations and 14 novel intronic variants were identified in this tumor. The novel missense mutation detected in ATM gene was situated in c.5808A>T; p. (Leu1936Phe) in exon 39, and a known ATM mutation was in c.5948A>G; p. (Asn1983Ser). These novel mutations had not been reported in previous database. Subsequently, the quality statistics of these variants, including allele coverage, allele ratio, P-value, Phred quality score, sequencing coverage, PolyPhen score and alleles frequency was performed. For all variants, P-value was highly significant and the Phred quality score was high. In addition, the results from sequencing coverage demonstrated that 97.02% reads were on target and that 97.88% amplicons had at least 500 reads. These findings may serve at determining new strategies to distinguish the types of choroid plexus tumor, and at developing novel targeted therapies. Development of NGS technologies in the Kingdom of Saudi Arabia may be used in molecular pathology laboratories.

9.
BMC Nephrol ; 20(1): 181, 2019 05 21.
Article En | MEDLINE | ID: mdl-31113397

BACKGROUND: Glucose is a primary osmotic agent in peritoneal dialysis (PD) solutions, but its long-term use causes structural alteration of the peritoneal membrane (PM). Hyperbranched polyglycerol (HPG) is a promising alternative to glucose. This study was designed to compare the cellular responses of human peritoneal mesothelial cells (HPMCs) to these two different osmotic agents in a hypertonic solution using transcriptome analysis. METHODS: Cultured HPMCs were repeatedly exposed to HPG-based or Physioneal 40 (PYS, glucose 2.27%) hypertonic solutions. Transcriptome datasets were produced using Agilent SurePrint G3 Human GE 8 × 60 microarray. Cellular signaling pathways were examined by Ingenuity Pathway Analysis (IPA). Protein expression was examined by flow cytometry analysis and Western blotting. RESULTS: The HPG-containing solution was better tolerated compared with PYS, with less cell death and disruption of cell transcriptome. The levels of cell death in HPG- or PYS- exposed cells were positively correlated with the number of affected transcripts (HPG: 128 at day 3, 0 at day 7; PYS: 1799 at day 3, 212 at day 7). In addition to more affected "biosynthesis" and "cellular stress and death" pathways by PYS, both HPG and PYS commonly affected "sulfate biosynthesis", "unfolded protein response", "apoptosis signaling" and "NRF2-mediated oxidative stress response" pathways at day 3. PYS significantly up-regulated HLA-DMB and MMP12 in a time-dependent manner, and stimulated T cell adhesion to HPMCs. CONCLUSION: The lower cytotoxicity of hypertonic HPG solution is in agreement with its transient and minimal impact on the pathways for the "biosynthesis of cell constituents" and the "cellular stress and death". The significant up-regulation of HLA-DMB and MMP12 by PYS may be part of its initiation of immune response in the PM.


Dialysis Solutions/administration & dosage , Gene Expression Profiling/methods , Peritoneal Cavity/cytology , Peritoneal Dialysis/trends , Signal Transduction/drug effects , Transcriptome/drug effects , Cell Line, Transformed , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Diuretics, Osmotic/administration & dosage , Humans , Jurkat Cells , Organic Chemicals/administration & dosage , Peritoneal Dialysis/methods , Polymethacrylic Acids/administration & dosage , Signal Transduction/genetics , Transcriptome/genetics
10.
J Med Cases ; 10(10): 293-295, 2019 Oct.
Article En | MEDLINE | ID: mdl-34434293

Glucose-6-phosphate dehydrogenase (G-6-PD) is the major enzyme in the pentose phosphate pathway (PPP). The end products of this pathway are ribose-5-phosphate and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH). G-6-PD deficiency is known to be the most common enzymatic deficiency in red blood cells (RBCs). Genetically, the mode of inheritance is an X-linked recessive disease. The exposure to oxidative stressors will result in hemolytic anemia including fava beans, infections, metabolic conditions such as diabetic ketoacidosis, metabolic acidosis, hyperglycemia, hypoglycemia, and hypothermia. Moreover, surgical stress and certain types of medication are known to lead to hemolytic anemia. Acute hemolytic crisis is a life-threatening situation in patients with G-6-PD deficiency. Therefore, it is extremely important to monitor the patient perioperatively. The authors present this case of successful anesthetic management in a 23-year-old lady with G-6-PD deficiency and a previous history of acute hemolytic anemia undergoing coblation adenoidectomy with septoplasty and turbinectomy.

11.
J Transl Med ; 14(1): 338, 2016 12 13.
Article En | MEDLINE | ID: mdl-27964722

BACKGROUND: Replacing glucose with a better biocompatible osmotic agent in peritoneal dialysis (PD) solutions is needed in PD clinic. We previously demonstrated the potential of hyperbranched polyglycerol (HPG) as a replacement for glucose. This study further investigated the long-term effects of chronic exposure to HPG as compared to a glucose-based conventional PD solution on peritoneal membrane (PM) structure and function in rats. METHODS: Adult male Wistar rats received once-daily intraperitoneal injection of 10 mL of HPG solution (1 kDa, HPG 6%) compared to Physioneal™ 40 (PYS, glucose 2.27%) or electrolyte solution (Control) for 3 months. The overall health conditions were determined by blood chemistry analysis. The PM function was determined by ultrafiltration, and its injury by histological and transcriptome-based pathway analyses. RESULTS: Here, we showed that there was no difference in the blood chemistry between rats receiving the HPG and the Control, while PYS increased serum alkaline phosphatase, globulin and creatinine and decreased serum albumin. Unlike PYS, HPG did not significantly attenuate PM function, which was associated with smaller change in both the structure and the angiogenesis of the PM and less cells expressing vascular endothelial growth factor, α-smooth muscle actin and MAC387 (macrophage marker). The pathway analysis revealed that there were more inflammatory signaling pathways functioning in the PM of PYS group than those of HPG or Control, which included the signaling for cytokine production in both macrophages and T cells, interleukin (IL)-6, IL-10, Toll-like receptors, triggering receptor expressed on myeloid cells 1 and high mobility group box 1. CONCLUSIONS: The results from this experimental study indicate the superiority of HPG to glucose in the preservation of the peritoneum function and structure during the long-term PD treatment, suggesting the potential of HPG as a novel osmotic agent for PD.


Dialysis Solutions/pharmacology , Glucose/pharmacology , Glycerol/pharmacology , Peritoneal Dialysis , Peritoneum/drug effects , Polymers/pharmacology , Preservation, Biological , Actins/metabolism , Animals , Cell Differentiation/drug effects , Disease Models, Animal , Inflammation/pathology , Lipid Metabolism/drug effects , Macrophage Activation/drug effects , Male , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/pathology , Peritoneum/pathology , Rats, Wistar , Signal Transduction/drug effects , Transcriptome/genetics , Vascular Endothelial Growth Factor A/metabolism
12.
J Cell Physiol ; 231(12): 2628-38, 2016 12.
Article En | MEDLINE | ID: mdl-27155085

Clusterin (CLU) is a chaperone-like protein and plays a protective role against renal ischemia-reperfusion injury (IRI); however, the molecular pathways for its functions in the kidney are not fully understood. This study was designed to investigate CLU-mediating pathways in kidney cells by using bioinformatics analysis. CLU null renal tubular epithelial cells (TECs) expressing human CLU cDNA (TEC-CLU(hCLU) ) or empty vector (TEC-CLU(-/-) ) were exposed to normoxia or hypoxia (1% O2 ). Transcriptome profiling with a significant twofold change was performed using SurePrint G3 Mouse Gene Expression 8 × 60 K microarray, and the signaling pathways was ranked by using Ingenuity pathway analysis. Here, we showed that compared to CLU null controls, ectopic expression of human CLU in CLU null kidney cells promoted cell growth but inhibited migration in normoxia, and enhanced cell survival in hypoxia. CLU expression affected expression of 3864 transcripts (1893 up-regulated) in normoxia and 3670 transcripts (1925 up-regulated) in hypoxia. CLU functions in normoxia were associated mostly with AKT2/PPP2R2B-dependent PI3K/AKT, PTEN, VEGF, and ERK/MAPK signaling and as well with GSK3B-mediated cell cycle progression. In addition to unfolded protein response (UPR) and/or endoplasmic reticulum (ER) stress, CLU-enhanced cell survival in hypoxia was also associated with PIK3CD/MAPK1-dependent PI3K/AKT, HIF-α, PTEN, VEGF, and ERK/MAPK signaling. In conclusion, our data showed that CLU functions in kidney cells were mainly mediated in a cascade manner by PI3K/AKT, PTEN, VEGF, and ERK/MAPK signaling, and specifically by activation of UPR/ER stress in hypoxia, providing new insights into the protective role of CLU in the kidney. J. Cell. Physiol. 231: 2628-2638, 2016. © 2016 Wiley Periodicals, Inc.


Clusterin/genetics , Kidney/metabolism , Signal Transduction/genetics , Transcriptome/genetics , Animals , Cell Hypoxia/genetics , Cell Movement/genetics , Cell Proliferation , Cell Survival/genetics , Clusterin/metabolism , Epithelial Cells/metabolism , Gene Expression Regulation , Humans , Mice, Inbred C57BL , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
...