Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 11(11)2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34827564

RESUMEN

Several members of the Hes/Her family, conserved targets of the Notch signalling pathway, encode transcriptional repressors that dimerise, bind DNA and self-repress. Such autoinhibition of transcription can yield homeostasis and, in the presence of delays that account for processes such as transcription, splicing and transport, oscillations. Whilst previous models of autoinhibition of transcription have tended to treat processes such as translation as being unregulated (and hence linear), here we develop and explore a mathematical model that considers autoinhibition of transcription together with nonlinear regulation of translation. It is demonstrated that such a model can yield, in the absence of delays, nonlinear dynamical behaviours such as excitability, homeostasis, oscillations and intermittency. These results indicate that regulation of translation as well as transcription allows for a much richer range of behaviours than is possible with autoregulation of transcription alone. A number of experiments are suggested that would that allow for the signature of autoregulation of translation as well as transcription to be experimentally detected in a Notch signalling system.


Asunto(s)
Factores de Transcripción , Proteínas de Homeodominio , Receptores Notch , Transcripción Genética
2.
EMBO Rep ; 20(7): e46436, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31267714

RESUMEN

All vertebrates share a segmented body axis. Segments form from the rostral end of the presomitic mesoderm (PSM) with a periodicity that is regulated by the segmentation clock. The segmentation clock is a molecular oscillator that exhibits dynamic clock gene expression across the PSM with a periodicity that matches somite formation. Notch signalling is crucial to this process. Altering Notch intracellular domain (NICD) stability affects both the clock period and somite size. However, the mechanism by which NICD stability is regulated in this context is unclear. We identified a highly conserved site crucial for NICD recognition by the SCF E3 ligase, which targets NICD for degradation. We demonstrate both CDK1 and CDK2 can phosphorylate NICD in the domain where this crucial residue lies and that NICD levels vary in a cell cycle-dependent manner. Inhibiting CDK1 or CDK2 activity increases NICD levels both in vitro and in vivo, leading to a delay of clock gene oscillations and an increase in somite size.


Asunto(s)
Relojes Biológicos , Proteína Quinasa CDC2/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Proteolisis , Receptores Notch/metabolismo , Animales , Ciclo Celular , Células Cultivadas , Secuencia Conservada , Células Madre Embrionarias/metabolismo , Células HEK293 , Humanos , Ratones , Fosforilación , Dominios Proteicos , Estabilidad Proteica , Receptores Notch/química
3.
Front Cell Dev Biol ; 4: 151, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28149836

RESUMEN

In the developing vertebrate embryo, segmentation initiates through the formation of repeated segments, or somites, on either side of the posterior neural tube along the anterior to posterior axis. The periodicity of somitogenesis is regulated by a molecular oscillator, the segmentation clock, driving cyclic gene expression in the unsegmented paraxial mesoderm, from which somites derive. Three signaling pathways underlie the molecular mechanism of the oscillator: Wnt, FGF, and Notch. In particular, Notch has been demonstrated to be an essential piece in the intricate somitogenesis regulation puzzle. Notch is required to synchronize oscillations between neighboring cells, and is moreover necessary for somite formation and clock gene oscillations. Following ligand activation, the Notch receptor is cleaved to liberate the active intracellular domain (NICD) and during somitogenesis NICD itself is produced and degraded in a cyclical manner, requiring tightly regulated, and coordinated turnover. It was recently shown that the pace of the segmentation clock is exquisitely sensitive to levels/stability of NICD. In this review, we focus on what is known about the mechanisms regulating NICD turnover, crucial to the activity of the pathway in all developmental contexts. To date, the regulation of NICD stability has been attributed to phosphorylation of the PEST domain which serves to recruit the SCF/Sel10/FBXW7 E3 ubiquitin ligase complex involved in NICD turnover. We will describe the pathophysiological relevance of NICD-FBXW7 interaction, whose defects have been linked to leukemia and a variety of solid cancers.

4.
Stem Cells Dev ; 20(11): 1817-27, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21351873

RESUMEN

The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures.


Asunto(s)
Células Madre Embrionarias/citología , Notocorda/citología , Organizadores Embrionarios/citología , Animales , Antígenos de Diferenciación/metabolismo , Benzamidas/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular , Embrión de Pollo , Dioxoles/farmacología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/trasplante , Proteínas Fluorescentes Verdes/biosíntesis , Factor Nuclear 3-beta del Hepatocito/farmacología , Factor Nuclear 3-beta del Hepatocito/fisiología , Proteínas de Homeodominio/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Ratones , Organizadores Embrionarios/metabolismo , Hormonas Peptídicas/farmacología , Hormonas Peptídicas/fisiología , Pirroles/farmacología , Receptores de Factores de Crecimiento/agonistas , Receptores de Factores de Crecimiento/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/biosíntesis , Transducción de Señal , Técnicas de Cultivo de Tejidos , Trasplante Heterólogo
5.
Dev Cell ; 10(3): 355-66, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16516838

RESUMEN

The segmented body plan of vertebrate embryos arises through segmentation of the paraxial mesoderm to form somites. The tight temporal and spatial control underlying this process of somitogenesis is regulated by the segmentation clock and the FGF signaling wavefront. Here, we report the cyclic mRNA expression of Snail 1 and Snail 2 in the mouse and chick presomitic mesoderm (PSM), respectively. Whereas Snail genes' oscillations are independent of NOTCH signaling, we show that they require WNT and FGF signaling. Overexpressing Snail 2 in the chick embryo prevents cyclic Lfng and Meso 1 expression in the PSM and disrupts somite formation. Moreover, cells mis-expressing Snail 2 fail to express Paraxis, remain mesenchymal, and are thereby inhibited from undergoing the epithelialization event that culminates in the formation of the epithelial somite. Thus, Snail genes define a class of cyclic genes that coordinate segmentation and PSM morphogenesis.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/fisiología , Morfogénesis , Isoformas de Proteínas , Factores de Transcripción , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Proteína Axina , Embrión de Pollo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/fisiología , Epitelio/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Ratones , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción de la Familia Snail , Somitos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA