Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Purinergic Signal ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740733

RESUMEN

Vascular P2Y receptors mediate many effects, but the role of individual subtypes is often unclear. Here we discuss how subtype-selective antagonists and receptor knockout/knockdown have helped identify these roles in numerous species and vessels. P2Y1 receptor-mediated vasoconstriction and endothelium-dependent vasodilation have been characterised using the selective antagonists, MRS2179 and MRS2216, whilst AR-C118925XX, a P2Y2 receptor antagonist, reduced endothelium-dependent relaxation, and signalling evoked by UTP or fluid shear stress. P2Y2 receptor knockdown reduced endothelial signalling and endothelial P2Y2 receptor knockout produced hypertensive mice and abolished vasodilation elicited by an increase in flow. UTP-evoked vasoconstriction was also blocked by AR-C118925XX, but the effects of P2Y2 receptor knockout were complex. No P2Y4 receptor antagonists are available and P2Y4 knockout did not affect the vascular actions of UTP and UDP. The P2Y6 receptor antagonist, MRS2578, identified endothelial P2Y6 receptors mediating vasodilation, but receptor knockout had complex effects. MRS2578 also inhibited, and P2Y6 knockout abolished, contractions evoked by UDP. P2Y6 receptors contribute to the myogenic tone induced by a stepped increase in vascular perfusion pressure and possibly to the development of atherosclerosis. The P2Y11 receptor antagonists, NF157 and NF340, inhibited ATP-evoked signalling in human endothelial cells. Vasoconstriction mediated by P2Y12/P2Y13 and P2Y14 receptors was characterised using the antagonists, cangrelor, ticagrelor, AR-C67085 and MRS2211 or PPTN respectively. This has yet to be backed up by receptor knockout experiments. Thus, subtype-selective antagonists and receptor knockout/knockdown have helped identify which P2Y subtypes are functionally expressed in vascular smooth muscle and endothelial cells and the effects that they mediate.

2.
Purinergic Signal ; 18(4): 515-528, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36018534

RESUMEN

Pulmonary vascular tone is modulated by nucleotides, but which P2 receptors mediate these actions is largely unclear. The aim of this study, therefore, was to use subtype-selective antagonists to determine the roles of individual P2Y receptor subtypes in nucleotide-evoked pulmonary vasodilation and vasoconstriction. Isometric tension was recorded from rat intrapulmonary artery rings (i.d. 200-500 µm) mounted on a wire myograph. Nucleotides evoked concentration- and endothelium-dependent vasodilation of precontracted tissues, but the concentration-response curves were shallow and did not reach a plateau. The selective P2Y2 antagonist, AR-C118925XX, inhibited uridine 5'-triphosphate (UTP)- but not adenosine 5'-triphosphate (ATP)-evoked relaxation, whereas the P2Y6 receptor antagonist, MRS2578, had no effect on UTP but inhibited relaxation elicited by uridine 5'-diphosphate (UDP). ATP-evoked relaxations were unaffected by the P2Y1 receptor antagonist, MRS2179, which substantially inhibited responses to adenosine 5'-diphosphate (ADP), and by the P2Y12/13 receptor antagonist, cangrelor, which potentiated responses to ADP. Both agonists were unaffected by CGS1593, an adenosine receptor antagonist. Finally, AR-C118925XX had no effect on vasoconstriction elicited by UTP or ATP at resting tone, although P2Y2 receptor mRNA was extracted from endothelium-denuded tissues using reverse transcription polymerase chain reaction with specific oligonucleotide primers. In conclusion, UTP elicits pulmonary vasodilation via P2Y2 receptors, whereas UDP acts at P2Y6 and ADP at P2Y1 receptors, respectively. How ATP induces vasodilation is unclear, but it does not involve P2Y1, P2Y2, P2Y12, P2Y13, or adenosine receptors. UTP- and ATP-evoked vasoconstriction was not mediated by P2Y2 receptors. Thus, this study advances our understanding of how nucleotides modulate pulmonary vascular tone.


Asunto(s)
Arteria Pulmonar , Vasodilatación , Ratas , Animales , Uridina Trifosfato/farmacología , Difosfatos/farmacología , Adenosina Trifosfato/farmacología , Uridina Difosfato/farmacología , Uridina/farmacología , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...