Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Neurosci Methods ; 407: 110154, 2024 Jul.
Article En | MEDLINE | ID: mdl-38697518

BACKGROUND: Thanks to its unrivalled spatial and temporal resolutions and signal-to-noise ratio, intracranial EEG (iEEG) is becoming a valuable tool in neuroscience research. To attribute functional properties to cortical tissue, it is paramount to be able to determine precisely the localization of each electrode with respect to a patient's brain anatomy. Several software packages or pipelines offer the possibility to localize manually or semi-automatically iEEG electrodes. However, their reliability and ease of use may leave to be desired. NEW METHOD: Voxeloc (voxel electrode locator) is a Matlab-based graphical user interface to localize and visualize stereo-EEG electrodes. Voxeloc adopts a semi-automated approach to determine the coordinates of each electrode contact, the user only needing to indicate the deep-most contact of each electrode shaft and another point more proximally. RESULTS: With a deliberately streamlined functionality and intuitive graphical user interface, the main advantages of Voxeloc are ease of use and inter-user reliability. Additionally, oblique slices along the shaft of each electrode can be generated to facilitate the precise localization of each contact. Voxeloc is open-source software and is compatible with the open iEEG-BIDS (Brain Imaging Data Structure) format. COMPARISON WITH EXISTING METHODS: Localizing full patients' iEEG implants was faster using Voxeloc than two comparable software packages, and the inter-user agreement was better. CONCLUSIONS: Voxeloc offers an easy-to-use and reliable tool to localize and visualize stereo-EEG electrodes. This will contribute to democratizing neuroscience research using iEEG.


Software , User-Computer Interface , Humans , Electrodes, Implanted , Electroencephalography/methods , Electroencephalography/instrumentation , Brain/physiology , Brain/diagnostic imaging , Electrocorticography/methods , Electrocorticography/instrumentation , Reproducibility of Results
2.
Genes (Basel) ; 15(3)2024 02 23.
Article En | MEDLINE | ID: mdl-38540339

Popeye domain-containing (POPDC) proteins selectively bind cAMP and mediate cellular responses to sympathetic nervous system (SNS) stimulation. The first discovered human genetic variant (POPDC1S201F) is associated with atrioventricular (AV) block, which is exacerbated by increased SNS activity. Zebrafish carrying the homologous mutation (popdc1S191F) display a similar phenotype to humans. To investigate the impact of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling, homozygous popdc1S191F and popdc1 knock-out (popdc1KO) zebrafish larvae and adult isolated popdc1S191F hearts were studied by functional fluorescent analysis. It was found that in popdc1S191F and popdc1KO larvae, heart rate (HR), AV delay, action potential (AP) and calcium transient (CaT) upstroke speed, and AP duration were less than in wild-type larvae, whereas CaT duration was greater. SNS stress by ß-adrenergic receptor stimulation with isoproterenol increased HR, lengthened AV delay, slowed AP and CaT upstroke speed, and shortened AP and CaT duration, yet did not result in arrhythmias. In adult popdc1S191F zebrafish hearts, there was a higher incidence of AV block, slower AP upstroke speed, and longer AP duration compared to wild-type hearts, with no differences in CaT. SNS stress increased AV delay and led to further AV block in popdc1S191F hearts while decreasing AP and CaT duration. Overall, we have revealed that arrhythmogenic effects of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling in zebrafish are varied, but already present in early development, and that AV node dysfunction may underlie SNS-induced arrhythmogenesis associated with popdc1 mutation in adults.


Atrioventricular Block , Calcium , Adult , Animals , Humans , Calcium/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Atrioventricular Node/metabolism , Electrophysiologic Techniques, Cardiac/adverse effects , Atrioventricular Block/complications , Arrhythmias, Cardiac/genetics , Cardiac Conduction System Disease
...