Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Vet Parasitol Reg Stud Reports ; 45: 100924, 2023 10.
Article En | MEDLINE | ID: mdl-37783527

Fasciola hepatica is a parasitic helminth (worm) that poses a significant economic threat to the ruminant livestock industry worldwide. The disease, fasciolosis, can result in a range of clinical signs including anaemia, weight loss and death, with the most severe symptoms attributed to early acute infection when the parasite is migrating through the liver. Early diagnosis and intervention are essential for the control and management of the disease to prevent productivity losses. The traditional gold standard method of diagnosis uses faecal egg counts (FEC) that is limited to detecting patent infections from 10 to 12 weeks post infection (WPI). In contrast, serological assays can detect pre-patent infections as we have shown that enzyme-linked immunosorbent assays (ELISA) using the F. hepatica cysteine peptidase cathepsin L1 (FhCL1) can detect liver fluke infections from 3 to 4 WPI. Here, we used FEC and ELISA to monitor liver fluke infections in sentinel lambs from three commercial farms in Ireland from September 2021 to March 2022. All three farms showed a significant increase in FhCL1 antibody levels and FEC over this time, with a substantial rise in positive infection detection between late November and January. However, ELISA screening detected infection at least two months prior to FEC (September). This suggests that the regular screening of sentinel lambs for F. hepatica seroconversion in a "test and treat" approach could mitigate the negative damaging impact of early fasciolosis on flock health, welfare and productivity and inform management strategies. In addition, we show that whole blood samples taken on Whatman® protein saver cards could replace conventional serum blood tubes for blood collection. Cards can be stored at room temperature for long periods of time and samples revisited at any time for re-analysis. The adoption of these cards on farm together with the FhCL1 ELISA would provide a simpler, cost-effective, and eco-friendly method for testing sentinel lambs for liver fluke disease.


Fasciola hepatica , Fascioliasis , Sheep , Animals , Farms , Fascioliasis/diagnosis , Fascioliasis/veterinary , Fascioliasis/parasitology , Cathepsins , Enzyme-Linked Immunosorbent Assay/veterinary , Enzyme-Linked Immunosorbent Assay/methods
2.
Vet Parasitol ; 323: 110049, 2023 Oct 08.
Article En | MEDLINE | ID: mdl-37826973

Our laboratory's vaccine development strategy against the livestock parasite Fasciola hepatica centres around disrupting key biological processes by combining groups of antigens with similar/complementary functional actions into a single vaccine cocktail. In this study the focus was on antioxidant protein vaccines and a protease inhibitor vaccine aimed at disrupting the parasite's ability to defend against oxidative stress and protease-inhibitor balance, respectively. Two combinations of recombinantly expressed antioxidants were assessed, namely peroxiredoxin (rFhPrx), thioredoxin (rFhTrx) and thioredoxin-glutathione reductase (rFhTGR) (Group 1) and rFhPrx, rFhTrx, and two superoxide dismutases (rFhSOD1 and rFhSOD3) (Group 2). The protease inhibitor vaccine cocktail included representatives of each of the key secreted protease inhibitor families, namely a Kunitz-type inhibitor (rFhKT1), a serpin (rFhSrp1) and a stefin, (rFhStf1) (Group 3). The vaccine combinations were formulated in adjuvant Montanide 61VG administered at five timepoints; two before experimental challenge with 60 F. hepatica metacercariae and three after infection. The vaccine combinations did not reduce the liver fluke burden, and only Group 2 displayed a marginal reduction in egg viability (8.2%). Despite previous results showing an effect of liver fluke vaccines on overall weight gain in infected animals, no significant (P value >0.05) impact on weight gain was observed in this study. Antibodies were elicited against all the vaccine antigens within the cocktails and were maintained at high levels to the end of the trial, due to our strategy of continuing vaccine administration after infection. However, these responses were not boosted by the challenge F. hepatica infection. A comparative analysis with previous vaccine data using a protease inhibitor vaccine found no repeat of the promising outcomes associated with this vaccine, indicating that the addition of rFhSrp1 to the vaccine cocktail did not improve vaccine efficacy. Assessment of liver pathology across the two trials using a modified liver enzyme score (glutamate dehydrogenase to platelet ratio) at eight weeks post infection suggests an association with liver fluke burden above 45 flukes, which could be used to predict liver pathology in future trials. The results reported in this study highlight the ambiguousness in liver fluke vaccine development and the difficulty in obtaining consistent and repeatable protection. This work stresses the need for repetition of trials and the use of sufficiently sized groups to assess vaccine efficacy with adequate statistical power.

3.
Antioxidants (Basel) ; 11(10)2022 Sep 30.
Article En | MEDLINE | ID: mdl-36290692

The antioxidant superoxide dismutase (SOD) catalyses the dismutation of superoxide, a dangerous oxygen free radical, into hydrogen peroxide and molecular oxygen. Superoxide generation during the oxidative burst of the innate immune system is considered a key component of the host defence against invading pathogens. We demonstrate the presence and differential expression of two SODs in Fasciola hepatica, a leaderless cytosolic (FhSOD1) and an extracellular (FhSOD3) form containing a secretory signal peptide, suggesting that the parasites exploit these enzymes in distinct ways to counteract reactive oxygen species (ROS) produced by cellular metabolism and immune defences. Both enzymes are highly expressed by the infective newly excysted juvenile (NEJ) stages and are found in abundance in their excretory-secretory products (ES), but only FhSOD1 is present in adult ES, suggesting that the antioxidants have different functions and pathways of secretion, and are under separate temporal expression control during the migration, growth, and development of the parasite. Functionally, the recombinant FhSOD1 and FhSOD3 exhibit similar activity against superoxide to their mammalian counterparts. Confocal immuno-localisation studies demonstrated the presence of FhSOD1 and FhSOD3 on the NEJ tegument and parenchyma, supporting our suggestion that these enzymes are secreted during host invasion to protect the parasites from the harmful oxidative bursts produced by the activated innate immune response. By producing superoxide enzymatically in vitro, we were able to demonstrate robust killing of F. hepatica NEJ within 24 h post-excystment, and that the lethal effect of ROS was nullified with the addition of SOD and catalase (the antioxidant enzyme responsible for the dismutation of hydrogen peroxide, a by-product of the SOD reaction). This study further elucidates the mechanism by which F. hepatica protects against ROS derived from cellular metabolism and how the parasite could mitigate damage caused by the host's immune response to benefit its survival.

4.
Genes (Basel) ; 13(10)2022 10 14.
Article En | MEDLINE | ID: mdl-36292739

The helminth parasites, Fasciola hepatica and Fasciola gigantica, are the causative agents of fasciolosis, a global and economically important disease of people and their livestock. Proteases are pivotal to an array of biological processes related to parasitism (development, feeding, immune evasion, virulence) and therefore their action requires strict regulation by parasite anti-proteases (protease inhibitors). By interrogating the current publicly available Fasciola spp. large sequencing datasets, including several genome assemblies and life cycle stage-specific transcriptome and proteome datasets, we reveal the complex profile and structure of proteases and anti-proteases families operating at various stages of the parasite's life cycle. Moreover, we have discovered distinct profiles of peptidases and their cognate inhibitors expressed by the parasite stages in the intermediate snail host, reflecting the different environmental niches in which they move, develop and extract nutrients. Comparative genomics revealed a similar cohort of peptidase inhibitors in F. hepatica and F. gigantica but a surprisingly reduced number of cathepsin peptidases genes in the F. gigantica genome assemblies. Chromosomal location of the F. gigantica genes provides new insights into the evolution of these gene families, and critical data for the future analysis and interrogation of Fasciola spp. hybrids spreading throughout the Asian and African continents.


Fasciola hepatica , Fasciola , Parasites , Animals , Fasciola/genetics , Fasciola hepatica/genetics , Peptide Hydrolases/genetics , Virulence , Proteome , Life Cycle Stages , Protease Inhibitors , Cathepsins
5.
Animals (Basel) ; 11(12)2021 Dec 08.
Article En | MEDLINE | ID: mdl-34944270

Fasciolosis caused by Fasciola hepatica is a major global disease of livestock and an important neglected helminthiasis of humans. Infection arises when encysted metacercariae are ingested by the mammalian host. Within the intestine, the parasite excysts as a newly excysted juvenile (NEJ) that penetrates the intestinal wall and migrates to the liver. NEJ excystment and tissue penetration are facilitated by the secretion of cysteine peptidases, namely, cathepsin B1 (FhCB1), cathepsin B2 (FhCB2), cathepsin B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these peptidases is growing, we have yet to understand why multiple enzymes are required for parasite invasion. Here, we produced functional recombinant forms of these four peptidases and compared their physio-biochemical characteristics. Our studies show great variation of their pH optima for activity, substrate specificity and inhibitory profile. Carboxy-dipeptidase activity was exhibited exclusively by FhCB1. Our studies suggest that, combined, these peptidases create a powerful hydrolytic cocktail capable of digesting the various host tissues, cells and macromolecules. Although we found several inhibitors of these enzymes, they did not show potent inhibition of metacercarial excystment or NEJ viability in vitro. However, this does not exclude these peptidases as targets for future drug or vaccine development.

6.
Virulence ; 12(1): 2839-2867, 2021 12.
Article En | MEDLINE | ID: mdl-34696693

Fasciolosis caused by the liver flukes Fasciola hepatica and Fasciola gigantica is one of the most important neglected parasitic diseases of humans and animals. The ability of the parasites to infect and multiply in their intermediate snail hosts, and their adaptation to a wide variety of mammalian definitive hosts contribute to their high transmissibility and distribution. Within the mammalian host, the trauma caused by the immature flukes burrowing through the liver parenchyma is associated with most of the pathogenesis. Similarly, the feeding activity and the physical presence of large flukes in the bile ducts can lead to anemia, inflammation, obstruction and cholangitis. The high frequency of non-synonymous polymorphisms found in Fasciola spp. genes allows for adaptation and invasion of a broad range of hosts. This is also facilitated by parasite's excretory-secretory (ES) molecules that mediate physiological changes that allows their establishment within the host. ES contains cathepsin peptidases that aid parasite invasion by degrading collagen and fibronectin. In the bile ducts, cathepsin-L is critical to hemoglobin digestion during feeding activities. Other molecules (peroxiredoxin, cathepsin-L and Kunitz-type inhibitor) stimulate a strong immune response polarized toward a Treg/Th2 phenotype that favors fluke's survival. Helminth defense molecule, fatty acid binding proteins, Fasciola-specific glycans and miRNAs modulate host pro-inflammatory responses, while antioxidant scavenger enzymes work in an orchestrated way to deter host oxidant-mediated damage. Combining these strategies Fasciola spp. survive for decades within their mammalian host, where they reproduce and spread to become one of the most widespread zoonotic worm parasites in the world.


Fasciola hepatica , Fasciola , Fascioliasis , Animals , Cathepsins , Fasciola/genetics , Fasciola hepatica/genetics , Fascioliasis/parasitology , Mammals , Virulence , Zoonoses
7.
Vet Parasitol ; 298: 109517, 2021 Oct.
Article En | MEDLINE | ID: mdl-34271318

Fasciolosis, a global parasitic disease of agricultural livestock, is caused by the liver fluke Fasciola hepatica. Management and strategic control of fasciolosis on farms depends on early assessment of the extent of disease so that control measures can be implemented quickly. Traditionally, this has relied on the detection of eggs in the faeces of animals, a laborious method that lacks sensitivity, especially for sub-clinical infections, and identifies chronic infections only. Enzyme linked immunosorbent assays (ELISA) offer a quicker and more sensitive serological means of diagnosis that could detect early acute infection before significant liver damage occurs. The performance of three functionally-active recombinant forms of the major F. hepatica secreted cathepsins L, rFhCL1, rFhCL2, rFhCL3, and a cathepsin B, rFhCB3, were evaluated as antigens in an indirect ELISA to serologically diagnose liver fluke infection in experimentally and naturally infected sheep. rFhCL1 and rFhCL3 were the most effective of the four antigens detecting fasciolosis in sheep as early as three weeks after experimental infection, at least five weeks earlier than both coproantigen and faecal egg tests. In addition, the rFhCL1 and rFhCL3 ELISAs had a very low detection limit for liver fluke in lambs exposed to natural infection on pastures and thus could play a major role in the surveillance of farms and a 'test and treat' approach to disease management. Finally, antibodies to all three cathepsin L proteases remain high throughout chronic infection but decline rapidly after drug treatment with the flukicide, triclabendazole, implying that the test may be adapted to trace the effectiveness of drug treatment.


Enzyme-Linked Immunosorbent Assay , Fasciola hepatica , Fascioliasis , Sheep Diseases , Animals , Cathepsin L/metabolism , Enzyme-Linked Immunosorbent Assay/veterinary , Fasciola hepatica/immunology , Fascioliasis/diagnosis , Fascioliasis/veterinary , Feces/parasitology , Ovum , Sheep , Sheep Diseases/diagnosis
8.
Vaccine ; 35(50): 6977-6983, 2017 12 15.
Article En | MEDLINE | ID: mdl-29122387

We examined the immunogenicity and protective potential of SmCB1 and SmCL3 cysteine peptidases, alone and in combination, in hamsters challenged with S. haematobium. For each of two independent experiments, eight Syrian hamsters were immunized twice with a three week-interval with 0 (controls), 20 µg SmCB1, 20 µg SmCL3, or 10 µg SmCB1 plus 10 µg SmCL3, and then percutaneously exposed eight weeks later to 100 S. haematobium cercariae. Hamsters from each group were assessed for humoral and whole blood culture cytokine responses on day 10 post challenge infection, and examined for parasitological parameters 12 weeks post infection. At day 10 post-infection we found that SmCB1 and SmCL3 elicited low antibody titres and weak but polarized cytokine type 2 responses. Nevertheless, both cysteine peptidases, alone or in combination, evoked reproducible and highly significant reduction in challenge worm burden (>70%, P < 0.02) as well as a significant reduction in worm egg counts and viability. The data support our previous findings and show that S. mansoni cysteine peptidases SmCB1 and SmCL3 are efficacious adjuvant-free vaccines that induce protection in mice and hamsters against both S. mansoni and S. haematobium.


Antigens, Helminth/immunology , Cysteine Proteases/immunology , Schistosoma haematobium/immunology , Schistosoma mansoni/immunology , Schistosomiasis haematobia/prevention & control , Animals , Antibodies, Helminth/blood , Antigens, Helminth/administration & dosage , Cysteine Proteases/administration & dosage , Cytokines/analysis , Disease Models, Animal , Female , Immunization Schedule , Mesocricetus , Parasite Load , Treatment Outcome
9.
PLoS Negl Trop Dis ; 11(3): e0005443, 2017 03.
Article En | MEDLINE | ID: mdl-28346516

BACKGROUND: Schistosomiasis, a severe disease caused by parasites of the genus Schistosoma, is prevalent in 74 countries, affecting more than 250 million people, particularly children. We have previously shown that the Schistosoma mansoni gut-derived cysteine peptidase, cathepsin B1 (SmCB1), administered without adjuvant, elicits protection (>60%) against challenge infection of S. mansoni or S. haematobium in outbred, CD-1 mice. Here we compare the immunogenicity and protective potential of another gut-derived cysteine peptidase, S. mansoni cathepsin L3 (SmCL3), alone, and in combination with SmCB1. We also examined whether protective responses could be boosted by including a third non-peptidase schistosome secreted molecule, glyceraldehyde 3-phosphate dehydrogenase (SG3PDH), with the two peptidases. METHODOLOGY/PRINCIPAL FINDINGS: While adjuvant-free SmCB1 and SmCL3 induced type 2 polarized responses in CD-1 outbred mice those elicited by SmCL3 were far weaker than those induced by SmCB1. Nevertheless, both cysteine peptidases evoked highly significant (P < 0.005) reduction in challenge worm burden (54-65%) as well as worm egg counts and viability. A combination of SmCL3 and SmCB1 did not induce significantly stronger immune responses or higher protection than that achieved using each peptidase alone. However, when the two peptidases were combined with SG3PDH the levels of protection against challenge S. mansoni infection reached 70-76% and were accompanied by highly significant (P < 0.005) decreases in worm egg counts and viability. Similarly, high levels of protection were achieved in hamsters immunized with the cysteine peptidase/SG3PDH-based vaccine. CONCLUSIONS/SIGNIFICANCE: Gut-derived cysteine peptidases are highly protective against schistosome challenge infection when administered subcutaneously without adjuvant to outbred CD-1 mice and hamsters, and can also act to enhance the efficacy of other schistosome antigens, such as SG3PDH. This cysteine peptidase-based vaccine should now be advanced to experiments in non-human primates and, if shown promise, progressed to Phase 1 safety trials in humans.


Antigens, Helminth/immunology , Cathepsin B/immunology , Cathepsin L/immunology , Gastrointestinal Tract/enzymology , Glyceraldehyde-3-Phosphate Dehydrogenases/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/prevention & control , Animals , Antigens, Helminth/administration & dosage , Cathepsin B/administration & dosage , Cathepsin L/administration & dosage , Cricetinae , Disease Models, Animal , Glyceraldehyde-3-Phosphate Dehydrogenases/administration & dosage , Injections, Subcutaneous , Mice , Parasite Load , Schistosomiasis mansoni/immunology , Survival Analysis , Treatment Outcome
10.
Genome Biol ; 16: 71, 2015 Apr 03.
Article En | MEDLINE | ID: mdl-25887684

BACKGROUND: The liver fluke Fasciola hepatica is a major pathogen of livestock worldwide, causing huge economic losses to agriculture, as well as 2.4 million human infections annually. RESULTS: Here we provide a draft genome for F. hepatica, which we find to be among the largest known pathogen genomes at 1.3 Gb. This size cannot be explained by genome duplication or expansion of a single repeat element, and remains a paradox given the burden it may impose on egg production necessary to transmit infection. Despite the potential for inbreeding by facultative self-fertilisation, substantial levels of polymorphism were found, which highlights the evolutionary potential for rapid adaptation to changes in host availability, climate change or to drug or vaccine interventions. Non-synonymous polymorphisms were elevated in genes shared with parasitic taxa, which may be particularly relevant for the ability of the parasite to adapt to a broad range of definitive mammalian and intermediate molluscan hosts. Large-scale transcriptional changes, particularly within expanded protease and tubulin families, were found as the parasite migrated from the gut, across the peritoneum and through the liver to mature in the bile ducts. We identify novel members of anti-oxidant and detoxification pathways and defined their differential expression through infection, which may explain the stage-specific efficacy of different anthelmintic drugs. CONCLUSIONS: The genome analysis described here provides new insights into the evolution of this important pathogen, its adaptation to the host environment and external selection pressures. This analysis also provides a platform for research into novel drugs and vaccines.


Adaptation, Physiological/genetics , Fasciola hepatica/genetics , Fascioliasis/genetics , Gene Duplication/genetics , Animals , Fasciola hepatica/pathogenicity , Fascioliasis/parasitology , Fascioliasis/pathology , Gene Expression Profiling , Genome, Helminth , Host-Pathogen Interactions/genetics , Humans , Polymorphism, Genetic
11.
Front Biosci (Schol Ed) ; 4(4): 1424-48, 2012 06 01.
Article En | MEDLINE | ID: mdl-22652884

During the development of malaria parasites within human erythrocytes, the fusion of digestive vesicles gives rise to a large digestive vacuole (DV). This organelle, which is maintained at low pH, processes 60-80 percent of the erythrocyte hemoglobin to provide a pool of amino acids that is crucial for parasite growth and development. During proteolysis, heme is released from hemoglobin as a toxic byproduct and is detoxified by biocrystallization to hemozoin. Proteases that contribute to hemoglobin breakdown, as well as other DV-associated proteins, arrive at this site via several different transport pathways. Antimalarial quinoline drugs, such as chloroquine, act by binding to heme and thus prevent its sequestration into hemozoin. Other drugs, such as artemisinin, may cause oxidative damage of DV macromolecules and membranes. The membrane of the DV contains ion pumps and transporters that maintain its low pH but are also pivotal in the development of parasite resistance to several antimalarial drugs. Methods for the isolation of the DV organelle have been developed to study the biogenesis and function of this important organelle.


Malaria/parasitology , Plasmodium/metabolism , Vacuoles/metabolism , Animals , Antimalarials/pharmacology , Chloroquine/pharmacology , Erythrocytes/metabolism , Erythrocytes/parasitology , Hemeproteins/metabolism , Hemoglobins/metabolism , Humans , Malaria/blood , Plasmodium/ultrastructure
...