Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
3.
Res Sq ; 2023 Apr 14.
Article En | MEDLINE | ID: mdl-37090662

Among the most common genetic alterations in the myelodysplastic syndromes (MDS) are mutations in the spliceosome gene SF3B1. Such mutations induce specific RNA missplicing events, directly promote ring sideroblast (RS) formation, generally associate with more favorable prognosis, and serve as a predictive biomarker of response to luspatercept. However, not all SF3B1 mutations are the same, and here we report that the E592K variant of SF3B1 associates with high-risk disease features in MDS, including a lack of RS, increased myeloblasts, a distinct co-mutation pattern, and decreased survival. Moreover, in contrast to canonical SF3B1 mutations, E592K induces a unique RNA missplicing pattern, retains an interaction with the splicing factor SUGP1, and preserves normal RNA splicing of the sideroblastic anemia genes TMEM14C and ABCB7. These data expand our knowledge of the functional diversity of spliceosome mutations, and they suggest that patients with E592K should be approached differently from low-risk, luspatercept-responsive MDS patients with ring sideroblasts and canonical SF3B1 mutations.

4.
Transplant Cell Ther ; 29(3): 182.e1-182.e8, 2023 03.
Article En | MEDLINE | ID: mdl-36587740

Patients age ≥55 years with acute lymphoblastic leukemia (ALL) fare poorly with conventional chemotherapy, with a 5-year overall survival (OS) of ∼20%. Tyrosine kinase inhibitors and novel B cell-targeted therapies can improve outcomes, but rates of relapse and death in remission remain high. Allogeneic blood or marrow transplantation (alloBMT) provides an alternative consolidation strategy, and post-transplantation cyclophosphamide (PTCy) facilitates HLA-mismatched transplantations with low rates of nonrelapse mortality (NRM) and graft-versus-host disease (GVHD). The transplantation database at Johns Hopkins was queried for patients age ≥55 years who underwent alloBMT for ALL using PTCy. The database included 77 such patients. Most received reduced-intensity conditioning (RIC) (88.3%), were in first complete remission (CR1) (85.7%), and had B-lineage disease (90.9%). For the entire cohort, 5-year relapse-free survival (RFS) and overall survival (OS) were 46% (95% confidence interval [CI], 34% to 57%) and 49% (95% CI, 37% to 60%), respectively. Grade III-IV acute GVHD occurred in only 3% of patients, and chronic GVHD occurred in 13%. In multivariable analysis, myeloablative conditioning led to worse RFS (hazard ratio [HR], 4.65; P = .001), whereas transplantation in CR1 (HR, .30; P = .004) and transplantation for Philadelphia chromosome-positive (Ph+) ALL versus T-ALL (HR, .29; P = .03) were associated with improved RFS. Of the 54 patients who underwent RIC alloBMT in CR1 for B-ALL, the 5-year RFS and OS were 62% (95% CI, 47% to 74%) and 65% (95% CI, 51% to 77%), respectively, with a 5-year relapse incidence of 16% (95% CI, 7% to 27%) and an NRM of 24% (95% CI, 13% to 36%). RIC alloBMT with PTCy in CR1 represents a promising consolidation strategy for B-ALL patients age ≥55 years.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Middle Aged , Bone Marrow , Cyclophosphamide/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Graft vs Host Disease/drug therapy , Recurrence , Acute Disease
5.
Haematologica ; 108(7): 1886-1899, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-36519323

Better understanding of the biology of resistance to DNA methyltransferase (DNMT) inhibitors is required to identify therapies that can improve their efficacy for patients with high-risk myelodysplastic syndrome (MDS). CCRL2 is an atypical chemokine receptor that is upregulated in CD34+ cells from MDS patients and induces proliferation of MDS and secondary acute myeloid leukemia (sAML) cells. In this study, we evaluated any role that CCRL2 may have in the regulation of pathways associated with poor response or resistance to DNMT inhibitors. We found that CCRL2 knockdown in TF-1 cells downregulated DNA methylation and PRC2 activity pathways and increased DNMT suppression by azacitidine in MDS/sAML cell lines (MDS92, MDS-L and TF-1). Consistently, CCRL2 deletion increased the sensitivity of these cells to azacitidine in vitro and the efficacy of azacitidine in an MDS-L xenograft model. Furthermore, CCRL2 overexpression in MDS-L and TF-1 cells decreased their sensitivity to azacitidine. Finally, CCRL2 levels were higher in CD34+ cells from MDS and MDS/myeloproliferative neoplasm patients with poor response to DNMT inhibitors. In conclusion, we demonstrated that CCRL2 modulates epigenetic regulatory pathways, particularly DNMT levels, and affects the sensitivity of MDS/sAML cells to azacitidine. These results support CCRL2 targeting as having therapeutic potential in MDS/sAML.


Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Azacitidine/pharmacology , Azacitidine/therapeutic use , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Cell Line
6.
Nat Commun ; 13(1): 5773, 2022 10 01.
Article En | MEDLINE | ID: mdl-36182931

Precise and reliable cell-specific gene delivery remains technically challenging. Here we report a splicing-based approach for controlling gene expression whereby separate translational reading frames are coupled to the inclusion or exclusion of mutated, frameshifting cell-specific alternative exons. Candidate exons are identified by analyzing thousands of publicly available RNA sequencing datasets and filtering by cell specificity, conservation, and local intron length. This method, which we denote splicing-linked expression design (SLED), can be combined in a Boolean manner with existing techniques such as minipromoters and viral capsids. SLED can use strong constitutive promoters, without sacrificing precision, by decoupling the tradeoff between promoter strength and selectivity. AAV-packaged SLED vectors can selectively deliver fluorescent reporters and calcium indicators to various neuronal subtypes in vivo. We also demonstrate gene therapy utility by creating SLED vectors that can target PRPH2 and SF3B1 mutations. The flexibility of SLED technology enables creative avenues for basic and translational research.


Calcium , RNA Splicing , Alternative Splicing/genetics , Base Sequence , Exons/genetics , Gene Expression Regulation , Introns/genetics
7.
Leuk Lymphoma ; 63(8): 1942-1948, 2022 08.
Article En | MEDLINE | ID: mdl-35379077

There are currently no known predictors of myelodysplastic syndrome (MDS)/myeloproliferative overlap neoplasm (MPN) patients' response to hypomethylating agents (HMA). Forty-three patients with MDS/MPN who were treated with HMA during chronic phase and had next-generation sequencing using the established 63-genes panel were identified. Complete and partial remission and marrow response were assessed based on the MDS/MPN International Working Group response criteria. On univariate analysis, younger age, higher number of mutations, and mutations in SETBP1, RUNX1, or EZH2 were associated with no response. Multivariable analysis for modeling response were conducted via least absolute shrinkage and selection operator logistic regression approach, and showed that mutations in SETBP1, RUNX1, or EZH2 predict lack of HMA response. While limited by sample size, our findings suggest that genomic landscape can potentially identify MDS/MPN patients with lower likelihood of response to HMA.


Myelodysplastic-Myeloproliferative Diseases , Neoplasms , Core Binding Factor Alpha 2 Subunit/genetics , Genomics , Humans , Mutation , Myelodysplastic-Myeloproliferative Diseases/diagnosis , Myelodysplastic-Myeloproliferative Diseases/drug therapy , Myelodysplastic-Myeloproliferative Diseases/genetics
8.
Oncotarget ; 13: 373-386, 2022.
Article En | MEDLINE | ID: mdl-35186194

Activating variants in the PEST region of NOTCH1 have been associated with aggressive phenotypes in human cancers, including triple-negative breast cancer (TNBC). Previous studies suggested that PEST domain variants in TNBC patients resulted in increased cell proliferation, invasiveness, and decreased overall survival. In this study, we assess the phenotypic transformation of activating NOTCH1 variants and their response to standard of care therapies. AAV-mediated gene targeting was used to isogenically incorporate 3 NOTCH1 variants, including a novel TNBC frameshift variant, in two non-tumorigenic breast epithelial cell lines, MCF10A and hTERT-IMEC. Two different variants at the NOTCH1 A2241 site (A2441fs and A2441T) both demonstrated increased transformative properties when compared to a non-transformative PEST domain variant (S2523L). These phenotypic changes include proliferation, migration, anchorage-independent growth, and MAPK pathway activation. In contrast to previous studies, activating NOTCH1 variants did not display sensitivity to a gamma secretase inhibitor (GSI) or resistance to chemotherapies. This study demonstrates distinct transformative phenotypes are specific to a given variant within NOTCH1 and these phenotypes do not correlate with sensitivities or resistance to chemotherapies or GSIs. Although previous studies have suggested NOTCH1 variants may be prognostic for TNBC, our study does not demonstrate prognostic ability of these variants and suggests further characterization would be required for clinical applications.


Triple Negative Breast Neoplasms , Cell Line, Tumor , Cell Proliferation/genetics , Gamma Secretase Inhibitors and Modulators , Humans , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction , Standard of Care , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/therapy
9.
Sci Adv ; 8(7): eabl8952, 2022 02 18.
Article En | MEDLINE | ID: mdl-35179961

The identification of new pathways supporting the myelodysplastic syndrome (MDS) primitive cells growth is required to develop targeted therapies. Within myeloid malignancies, men have worse outcomes than women, suggesting male sex hormone-driven effects in malignant hematopoiesis. Androgen receptor promotes the expression of five granulocyte colony-stimulating factor receptor-regulated genes. Among them, CCRL2 encodes an atypical chemokine receptor regulating cytokine signaling in granulocytes, but its role in myeloid malignancies is unknown. Our study revealed that CCRL2 is up-regulated in primitive cells from patients with MDS and secondary acute myeloid leukemia (sAML). CCRL2 knockdown suppressed MDS92 and MDS-L cell growth and clonogenicity in vitro and in vivo and decreased JAK2/STAT3/STAT5 phosphorylation. CCRL2 coprecipitated with JAK2 and potentiated JAK2-STAT interaction. Erythroleukemia cells expressing JAK2V617F showed less effect of CCRL2 knockdown, whereas fedratinib potentiated the CCRL2 knockdown effect. Conclusively, our results implicate CCRL2 as an MDS/sAML cell growth mediator, partially through JAK2/STAT signaling.


Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Cell Proliferation , Female , Hematopoiesis , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Signal Transduction
10.
Blood Adv ; 4(20): 5078-5088, 2020 10 27.
Article En | MEDLINE | ID: mdl-33080006

Allogeneic blood or marrow transplantation (alloBMT) is standard of care for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) in first complete remission (CR1). The routine pretransplant and posttransplant use of tyrosine kinase inhibitors (TKIs) has dramatically improved outcomes, but the optimal conditioning regimen, donor type, and TKI remain undefined. The bone marrow transplant database at Johns Hopkins was queried for adult patients with de novo Ph+ ALL who received alloBMT using posttransplantation cyclophosphamide (PTCy) as a component of graft-versus-host disease (GVHD) prophylaxis from 2008 to 2018. Among transplants for Ph+ ALL, 69 (85%) were performed in CR1, and 12 (15%) were performed in second or greater remission (CR2+). The majority of transplants (58%) were HLA haploidentical. Nearly all patients (91.4%) initiated TKI posttransplant. For patients in CR1, the 5-year relapse-free survival (RFS) was 66%. The use of nonmyeloablative conditioning, absence of measurable residual disease (MRD) according to flow cytometry at transplant, and the use of dasatinib vs imatinib at diagnosis were associated with improved overall survival (OS) and RFS. Neither donor type nor recipient age ≥60 years affected RFS. When analyzing all transplants, alloBMT in CR1 (vs CR2+) and the absence of pretransplant MRD were associated with improved RFS. Most relapses were associated with the emergence of kinase domain mutations. The cumulative incidence of grade 3 to 4 acute GVHD at 1 year was 9%, and moderate to severe chronic GVHD at 2 years was 8%. Nonmyeloablative alloBMT with PTCy for Ph+ ALL in an MRD-negative CR1 after initial treatment with dasatinib yields favorable outcomes.


Graft vs Host Disease , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adult , Cyclophosphamide/therapeutic use , Humans , Middle Aged , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Transplantation Conditioning , Transplantation, Homologous
11.
Mol Cell Oncol ; 7(3): 1697619, 2020.
Article En | MEDLINE | ID: mdl-32391415

Mutations in the splicing factor 3b subunit 1 (SF3B1) gene create a neomorphic protein that disrupts RNA splicing, but the downstream consequences of this missplicing are unclear. Our recent study of isogenic human cells demonstrated that SF3B1 MUT induces reprogramming of energy metabolism and a targetable vulnerability to deprivation of the nonessential amino acid serine.

12.
J Clin Invest ; 130(6): 2820-2822, 2020 06 01.
Article En | MEDLINE | ID: mdl-32420915

Phosphoglycerate dehydrogenase (PHGDH) catalyzes the first step in the synthesis of the amino acid serine, important for protein synthesis, one-carbon metabolism, lipid production, redox homeostasis, and other key processes of normal and cancer metabolism. While PHGDH is often overexpressed in cancer cells, how it is regulated has been unclear. In this issue of the JCI, Liu and colleagues describe a new aspect of PHGDH regulation, demonstrating that the Parkinson disease gene and tumor suppressor Parkin bound and ubiquitinated PHGDH. Parkin promoted PHGDH degradation, suppressed serine synthesis, and inhibited tumor growth in human cancer cell line xenografts. Conversely, inactivation of Parkin not only accelerated tumor growth, but also sensitized tumors to small molecule inhibitors of PHGDH. These results offer a new link between Parkin and the serine synthesis pathway, and they bear translational potential that warrants further study in Parkin-deficient human cancers.


Neoplasms , Parkinson Disease , Cell Line, Tumor , Cell Proliferation , Humans , Parkinson Disease/genetics , Serine/genetics , Ubiquitin-Protein Ligases/genetics
14.
J Clin Invest ; 129(11): 4708-4723, 2019 08 08.
Article En | MEDLINE | ID: mdl-31393856

Cancer-associated mutations in the spliceosome gene SF3B1 create a neomorphic protein that produces aberrant mRNA splicing in hundreds of genes, but the ensuing biologic and therapeutic consequences of this missplicing are not well understood. Here we have provided evidence that aberrant splicing by mutant SF3B1 altered the transcriptome, proteome, and metabolome of human cells, leading to missplicing-associated downregulation of metabolic genes, decreased mitochondrial respiration, and suppression of the serine synthesis pathway. We also found that mutant SF3B1 induces vulnerability to deprivation of the nonessential amino acid serine, which was mediated by missplicing-associated downregulation of the serine synthesis pathway enzyme PHGDH. This vulnerability was manifest both in vitro and in vivo, as dietary restriction of serine and glycine in mice was able to inhibit the growth of SF3B1MUT xenografts. These findings describe a role for SF3B1 mutations in altered energy metabolism, and they offer a new therapeutic strategy against SF3B1MUT cancers.


Cellular Reprogramming , Mutation , Neoplasm Proteins/metabolism , Neoplasms , Phosphoproteins , Proteome/metabolism , RNA Splicing Factors , Serine , Transcriptome , Animals , Cell Line, Tumor , Energy Metabolism/genetics , Glycine , Humans , Mice , Neoplasm Proteins/genetics , Neoplasms/diet therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Proteome/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Xenograft Model Antitumor Assays
15.
Breast Cancer Res Treat ; 174(2): 401-412, 2019 Apr.
Article En | MEDLINE | ID: mdl-30560461

PURPOSE: Estrogen receptor-alpha (ER) is a therapeutic target of ER-positive (ER+) breast cancers. Although ER signaling is complex, many mediators of this pathway have been identified. Specifically, phosphorylation of ER at serine 118 affects responses to estrogen and therapeutic ligands and has been correlated with clinical outcomes in ER+ breast cancer patients. We hypothesized that a newly described germline variant (S118P) at this residue would drive cellular changes consistent with breast cancer development and/or hormone resistance. METHODS: Isogenic human breast epithelial cell line models harboring ER S118P were developed via genome editing and characterized to determine the functional effects of this variant. We also examined the frequency of ER S118P in a case-control study (N = 536) of women with and without breast cancer with a familial risk. RESULTS: In heterozygous knock-in models, the S118P variant demonstrated no significant change in proliferation, migration, MAP Kinase pathway signaling, or response to the endocrine therapies tamoxifen and fulvestrant. Further, there was no difference in the prevalence of S118P between women with and without cancer relative to population registry databases. CONCLUSIONS: This study suggests that the ER S118P variant does not affect risk for breast cancer or hormone therapy resistance. Germline screening and modification of treatments for patients harboring this variant are likely not warranted.


Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/epidemiology , Estrogen Receptor alpha/genetics , Germ-Line Mutation , Adult , Aged , Breast Neoplasms/genetics , Case-Control Studies , Cell Line, Tumor , Cell Movement , Cell Proliferation , Estrogen Receptor alpha/metabolism , Female , Fulvestrant/therapeutic use , Genetic Variation , Humans , Incidence , MCF-7 Cells , Middle Aged , Phosphorylation , Survival Analysis , Tamoxifen/therapeutic use , Treatment Outcome
16.
Clin Chem ; 63(8): 1370-1376, 2017 Aug.
Article En | MEDLINE | ID: mdl-28615231

BACKGROUND: Molecular-based diagnostics have great utility for cancer detection. We have used droplet digital PCR (ddPCR) as a platform for identifying mutations in circulating plasma tumor DNA (ptDNA). We present the unexpected finding of a spurious mutant allele fraction that was discovered to be artifactual because of the presence of a single-nucleotide polymorphism (SNP) in a patient sample. DESIGN AND METHODS: Probe and primer combinations for the K700 and V701 loci of the SF3B1 spliceosome gene were designed for ddPCR to identify the percentage of mutant and wild-type alleles. Clinical samples from patients with cancer with known SF3B1 mutations were collected and tested to evaluate the assays' ability to detect SF3B1 mutations in ptDNA. RESULTS: Patient samples showed SF3B1 K700E mutations within the ptDNA of 4 patients with acute leukemia and 3 with myelodysplastic syndrome who were known to harbor this mutation. A blood sample from a patient with lung cancer with a known SF3B1 V701F mutation was also analyzed and this mutation was successfully identified in ptDNA. However, 1 of the patients with a K700E mutation was found to have a mutational burden of 98%. After careful analysis of this locus by Sanger sequencing and ddPCR, this patient was found to have an SNP (R702R), which prevented binding of the ddPCR wild-type probe to its cognate allele. CONCLUSIONS: These results further support that ddPCR-based assays may be valuable companion diagnostics for the identification and monitoring of patients with cancer, but the results also emphasize the need to identify SNPs at loci that are being analyzed.


Alleles , DNA, Neoplasm/genetics , Phosphoproteins/genetics , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide/genetics , RNA Splicing Factors/genetics , DNA, Neoplasm/blood , False Positive Reactions , Humans , Mutation
17.
Breast Cancer Res Treat ; 162(3): 451-464, 2017 04.
Article En | MEDLINE | ID: mdl-28190247

BACKGROUND/PURPOSE: The combined contributions of oncogenes and tumor suppressor genes toward carcinogenesis remain poorly understood. Elucidation of cancer gene cooperativity can provide new insights leading to more effective use of therapies. EXPERIMENTAL DESIGN/METHODS: We used somatic cell genome editing to introduce singly and in combination PIK3CA mutations (E545K or H1047R) with TP53 alterations (R248W or knockout), to assess any enhanced cancerous phenotypes. The non-tumorigenic human breast epithelial cell line, MCF10A, was used as the parental cell line, and resultant cells were assessed via various in vitro assays, growth as xenografts, and drug sensitivity assays using targeted agents and chemotherapies. RESULTS: Compared to single-gene-targeted cells and parental controls, cells with both a PIK3CA mutation and TP53 alteration had increased cancerous phenotypes including cell proliferation, soft agar colony formation, aberrant morphology in acinar formation assays, and genomic heterogeneity. Cells also displayed varying sensitivities to anti-neoplastic drugs, although all cells with PIK3CA mutations showed a relative increased sensitivity to paclitaxel. All cell lines remained non-tumorigenic. CONCLUSIONS: This cell line panel provides a resource for further elucidating cooperative genetic mediators of carcinogenesis and response to therapies.


Breast Neoplasms/genetics , Breast Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases/genetics , Mutation , Phenotype , Tumor Suppressor Protein p53/genetics , Animals , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Centromere/genetics , DNA Copy Number Variations , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Female , Gene Amplification , Gene Editing , Gene Knockout Techniques , Genomic Instability , Genotype , Humans , Mice , Paclitaxel/pharmacology
18.
JCO Precis Oncol ; 20172017.
Article En | MEDLINE | ID: mdl-30003184

PURPOSE: Tumor genomic profiling for personalized oncology therapy is being widely applied in clinical practice even as it is being evaluated more formally in clinical trials. Given the complexities of genomic data and its application to clinical use, molecular tumor boards with diverse expertise can provide guidance to oncologists and patients seeking to implement personalized genetically targeted therapy in practice. METHODS: A multidisciplinary molecular tumor board reviewed tumor molecular profiling reports from consecutive referrals at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins over a 3-year period. The tumor board weighed evidence for actionability of genomic alterations identified by molecular profiling and provided recommendations including US Food and Drug Administration-approved drug therapy, clinical trials of matched targeted therapy, off-label use of such therapy, and additional tumor or germline genetic testing. RESULTS: One hundred fifty-five patients were reviewed. Actionable genomic alterations were identified in 132 patients (85%). Off-label therapies were recommended in 37 patients (24%). Eleven patients were treated off-label, and 13 patients were enrolled onto clinical trials of matched targeted therapies. Median progression-free survival of patients treated with matched therapies was 5 months (95% CI, 2.9 months to not reached), and the progression-free survival probability at 6 months was 43%(95% CI, 26% to 71%). Lack of locally available clinical trials was the major limitation on clinical actionability of tumor profiling reports. CONCLUSION: The molecular tumor board recommended off-label targeted therapies for a quarter of all patients reviewed. Outcomes were heterogeneous, although 43% of patients receiving genomically matched therapy derived clinical benefit lasting at least 6 months. Until more data become available from precision oncology trials, molecular tumor boards can help guide appropriate use of tumor molecular testing to direct therapy.

19.
J Natl Compr Canc Netw ; 14(12): 1495-1498, 2016 12.
Article En | MEDLINE | ID: mdl-27956534

Next-generation sequencing (NGS) is increasingly being used in cancer care to identify both somatic tumor driver mutations that can be targeted for therapy, and heritable mutations in the germline associated with increased cancer risk. This report presents a case of a JAK2 V617F mutation falsely identified as a duodenal cancer mutation via NGS. The patient was found to have a history of polycythemia vera, a disorder with a high incidence of JAK2 somatic mutations. Buccal cell DNA showed heterozygosity for the mutation, suggesting that it was potentially germline. However, subsequent resequencing of tumor, adjacent normal tissue, and fingernail DNA confirmed the mutation was somatic, and its presence in tumor and buccal cells resulted from contaminating blood cells. This report highlights important nuances of NGS that can lead to misinterpretation of results with potential clinical implications.


Adenocarcinoma/diagnosis , DNA Contamination , Duodenal Neoplasms/diagnosis , Janus Kinase 2/genetics , Polycythemia Vera/diagnosis , Abdominal Pain/etiology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Blood Cells , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Chemotherapy, Adjuvant , Diagnosis, Differential , Duodenal Neoplasms/genetics , Duodenal Neoplasms/pathology , Duodenal Neoplasms/therapy , Duodenum/diagnostic imaging , Female , Fluorouracil/therapeutic use , Heterozygote , High-Throughput Nucleotide Sequencing , Hospice Care , Humans , Leucovorin/therapeutic use , Mouth Mucosa/cytology , Mutation , Nails , Organoplatinum Compounds/therapeutic use , Pancreaticoduodenectomy/methods , Phlebotomy , Polycythemia Vera/complications , Polycythemia Vera/genetics , Polycythemia Vera/therapy , Sequence Analysis, DNA , Tomography, X-Ray Computed
20.
Clin Cancer Res ; 22(4): 993-9, 2016 Feb 15.
Article En | MEDLINE | ID: mdl-26261103

PURPOSE: Mutations in the estrogen receptor (ER)α gene, ESR1, have been identified in breast cancer metastases after progression on endocrine therapies. Because of limitations of metastatic biopsies, the reported frequency of ESR1 mutations may be underestimated. Here, we show a high frequency of ESR1 mutations using circulating plasma tumor DNA (ptDNA) from patients with metastatic breast cancer. EXPERIMENTAL DESIGN: We retrospectively obtained plasma samples from eight patients with known ESR1 mutations and three patients with wild-type ESR1 identified by next-generation sequencing (NGS) of biopsied metastatic tissues. Three common ESR1 mutations were queried for using droplet digital PCR (ddPCR). In a prospective cohort, metastatic tissue and plasma were collected contemporaneously from eight ER-positive and four ER-negative patients. Tissue biopsies were sequenced by NGS, and ptDNA ESR1 mutations were analyzed by ddPCR. RESULTS: In the retrospective cohort, all corresponding mutations were detected in ptDNA, with two patients harboring additional ESR1 mutations not present in their metastatic tissues. In the prospective cohort, three ER-positive patients did not have adequate tissue for NGS, and no ESR1 mutations were identified in tissue biopsies from the other nine patients. In contrast, ddPCR detected seven ptDNA ESR1 mutations in 6 of 12 patients (50%). CONCLUSIONS: We show that ESR1 mutations can occur at a high frequency and suggest that blood can be used to identify additional mutations not found by sequencing of a single metastatic lesion.


Breast Neoplasms/genetics , DNA, Neoplasm/blood , Estrogen Receptor alpha/genetics , Liver Neoplasms/genetics , Adult , Aged , Breast Neoplasms/blood , Breast Neoplasms/pathology , DNA Mutational Analysis , DNA, Neoplasm/genetics , Female , Gene Frequency , Humans , Liver Neoplasms/blood , Liver Neoplasms/secondary , Middle Aged , Mutation, Missense
...