Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 931: 172523, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657804

RESUMEN

Landscape features can impede dispersal, gene flow, and population demography, resulting in the formation of several meta-populations within a continuous landscape. Understanding a species' ability to overcome these barriers is critical for predicting genetic connectivity and population persistence, and implementing effective conservation strategies. In the present study, we conducted a fine-scale spatial genetic analysis to understand the contemporary gene flow within red panda populations in the Eastern Himalayas. Employing geometric aspects of reserve design, we delineated the critical core habitats for red pandas, which comprise 14.5 % of the landscape (12,189.75 Km2), with only a mere 443 Km2 falling within the protected areas. We identified corridors among the core habitats, which may be vital for the species' long-term genetic viability. Furthermore, we identified substantial landscape barriers, including Sela Pass in the western region, Siang river in the central region, and the Dibang river, Lohit river, along with Dihang, Dipher, and Kumjawng passes in the eastern region, which hinder gene flow. We suggest managing red panda populations through the creation of Community Conservation Reserves in the identified core habitats, following landscape-level management planning based on the core principles of geometric reserve design. This includes a specific emphasis on identified core habitats of red panda (CH-RP 5 and CH-RP 8) to facilitate corridors and implement meta-population dynamics. We propose the development of a comprehensive, long-term conservation and management plan for red pandas in the transboundary landscape, covering China, Nepal, and Bhutan.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Flujo Génico , Ursidae , Animales , Ursidae/genética , China , Distribución Animal , Himalayas
2.
Mol Biol Rep ; 51(1): 136, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236328

RESUMEN

BACKGROUND: Captive breeding programs play a vital role in conservation of threatened species, necessitating an understanding of genetic diversity among captive individuals to ensure long-term genetic viability, appropriate mate selection, and successful reintroduction to native habitats. METHODS AND RESULTS: We did not observe any recent genetic bottleneck, and population showed moderate genetic diversity. The estimated effective population size, representing individuals capable of contributing genetically to future generations, was estimated as 18.6 individuals (11.4-35.1 at 95% CI). Based on the genetic make-up and allelic diversity, we found seventeen pangolins (11 females and 6 males) were genetically unrelated and relatively more potent than others. CONCLUSION: In this study, we evaluated the captive breeding program of the Indian pangolin population at the Pangolin Conservation Breeding Centre in Nandankanan Zoological Park, Bhubaneswar, Odisha. We highlight the significance of genetic monitoring within the captive population of Indian pangolin for preserving genetic diversity and ensuring the long-term survival of the species. We established the genetic profiles of all 29 pangolins and identified 17 pangolins to be prioritized for enhanced breeding and future zoo exchange programs. We appreciate the zoo authorities for promoting genetic assessment of pangolin for better and more effective monitoring of the captive breeding of the endangered Indian pangolin.


Asunto(s)
Cruzamiento , Pangolines , Humanos , Femenino , Masculino , Animales , Alelos , Especies en Peligro de Extinción , Perfil Genético
3.
Sci Rep ; 13(1): 18152, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875501

RESUMEN

The trans-Himalayan region of India, although have xeric features, still supports a unique assemblage of biodiversity, including some of the charismatic and endemic species. In the present study, we studied blue sheep (Pseudois nayaur) across the distribution range in the Western trans Himalayas of India and found about 18,775 km2 area suitable for blue sheep. The explicit Bayesian based spatial and non-spatial population structure analysis assigned blue sheep into two genetic populations, i.e., Ladakh and Lahaul-Spiti. We found relatively high genetic divergence in blue sheep which is also supported by the low current flow in Circuitscape model. With the multiple evidences, we explain landscape resistance facilitated by the landscape heterogeneity, and large patches of unsuitable habitats forced population divergence and poor functional connectivity. We found that blue sheep population has been demographically stable in the past, but showed a slight decline within the last few decades. This study is the first range-wide attempt to exhibit landscape features in shaping the spatial distribution, genetic structure and demography patterns of blue sheep in Western Himalayas, and will be of use in the conservation and management planning of blue sheep.


Asunto(s)
Ecosistema , Genética de Población , Animales , Ovinos/genética , Teorema de Bayes , Biodiversidad , Flujo Genético
4.
Sci Total Environ ; 853: 158679, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36099955

RESUMEN

Large forested landscapes often harbour significant amount of biodiversity and support mankind by rendering various livelihood opportunities and ecosystem services. Their periodic assessment for health and ecological integrity is essential for timely mitigation of any negative impact of human use due to over harvesting of natural resources or unsustainable developmental activities. In this context, monitoring of mega fauna may provide reasonable insights about the connectivity and quality of forested habitats. In the present study, we conducted a largest non-invasive genetic survey to explore mammalian diversity and genetically characterized 13 mammals from the Indian Himalayan Region (IHR). We analyzed 4806 faecal samples using 103 autosomal microsatellites and with three mitochondrial genes, we identified 37 species of mammal. We observed low to moderate level of genetic variability and most species exhibited stable demographic history. We estimated an unbiased population genetic account (PGAunbias) for 13 species that may be monitored after a fixed time interval to understand species performance in response to the landscape changes. The present study has been evident to show pragmatic permeability with the representative sampling in the IHR in order to facilitate the development of species-oriented conservation and management programmes.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Humanos , Biodiversidad , Mamíferos/genética
5.
Sci Rep ; 11(1): 65, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420314

RESUMEN

Pleistocene glaciations facilitated climatic oscillations that caused for enormous heterogeneity in landscapes, and consequently affected demography and distribution patterns of the mountain endemic species. In this context, we investigated demographic history and population genetic structure of red panda, distributed along the geographical proximity in the southern edge of the Qinghai-Tibetan Plateau. Bayesian based phylogeny demonstrated that red panda diverged about 0.30 million years ago (CI 0.23-0.39) into two phylogenetic (sub) species, that correspond to the middle-late Pleistocene transition. The observed intraspecific clades with respect to Himalayan and Chinese red panda indicated restricted gene flow resulting from the Pleistocene glaciations in the eastern and southern Tibetan Plateau. We found Himalayan red panda population at least in KL-India declined abruptly in last 5-10 thousand years after being under demographic equilibrium. We suggest revisiting the ongoing conservation activities through cross border collaboration by developing multi-nationals, and multi-lateral species-oriented conservation action plans to support the red panda populations in transboundary landscapes.


Asunto(s)
Ailuridae , Ailuridae/genética , Animales , China , Demografía , Genética de Población , Geología , Haplotipos/genética , Cubierta de Hielo , India , Filogenia , Tibet
6.
Sci Rep ; 10(1): 15446, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963325

RESUMEN

Wildlife management in rapid changing landscapes requires critical planning through cross cutting networks, and understanding of landscape features, often affected by the anthropogenic activities. The present study demonstrates fine-scale spatial patterns of genetic variation and contemporary gene flow of red panda (Ailurus fulgens) populations with respect to landscape connectivity in Kangchenjunga Landscape (KL), India. The study found about 1,309.54 km2 area suitable for red panda in KL-India, of which 62.21% area fell under the Protected Area network. We identified 24 unique individuals from 234 feces collected at nine microsatellite loci. The spatially explicit and non-explicit Bayesian clustering algorithms evident to exhibit population structuring and supported red panda populations to exist in meta-population frame work. In concurrence to the habitat suitability and landscape connectivity models, gene flow results supported a contemporary asymmetric movement of red panda by connecting KL-India in a crescent arc. We demonstrate the structural-operational connectivity of corridors in KL-India that facilitated red panda movement in the past. We also seek for cooperation in Nepal, Bhutan and China to aid in preparing for a comprehensive monitoring plan for the long-term conservation and management of red panda in trans-boundary landscapes.


Asunto(s)
Ailuridae/genética , Biodiversidad , Ecosistema , Flujo Génico , Variación Genética , Genética de Población/métodos , Movimiento , Ailuridae/fisiología , Animales , Teorema de Bayes , India , Repeticiones de Microsatélite , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...