Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Adv Exp Med Biol ; 1120: 97-106, 2019.
Article En | MEDLINE | ID: mdl-30919297

The structure of the blood vessel wall has historically been studied using thin cut sections using standard histological stains. In the mid-80s laser scanning confocal microscopes became available and offered investigators the chance to examine the 3D structure of thicker sections (i.e. ~60 µm depth penetration for a typical vascular wall). Unfortunately, desktop computers lagged far behind in their capacity to process and display large 3D (confocal) data sets. Even extremely highly priced graphics workstations of the early to mid-90s offered little in the way of flexible 3D viewing. Today's gaming PCs provide the kind of processing power that 3D confocal users have been waiting for. Coupled with high end animation software, virtual reality and game design software, we now have the capacity to exploit the huge data sets that modern microscopes can produce. In this chapter, the vascular wall will be used as an example of a biological tissue that can benefit from these developments in imaging hardware and software.


Blood Vessels/diagnostic imaging , Imaging, Three-Dimensional , Microscopy, Confocal , Software , Computer Graphics , Humans , Microtomy
2.
Proc Natl Acad Sci U S A ; 114(43): E9163-E9171, 2017 10 24.
Article En | MEDLINE | ID: mdl-29073113

The mostly widely used bronchodilators in asthma therapy are ß2-adrenoreceptor (ß2AR) agonists, but their chronic use causes paradoxical adverse effects. We have previously determined that ß2AR activation is required for expression of the asthma phenotype in mice, but the cell types involved are unknown. We now demonstrate that ß2AR signaling in the airway epithelium is sufficient to mediate key features of the asthmatic responses to IL-13 in murine models. Our data show that inhibition of ß2AR signaling with an aerosolized antagonist attenuates airway hyperresponsiveness (AHR), eosinophilic inflammation, and mucus-production responses to IL-13, whereas treatment with an aerosolized agonist worsens these phenotypes, suggesting that ß2AR signaling on resident lung cells modulates the asthma phenotype. Labeling with a fluorescent ß2AR ligand shows the receptors are highly expressed in airway epithelium. In ß2AR-/- mice, transgenic expression of ß2ARs only in airway epithelium is sufficient to rescue IL-13-induced AHR, inflammation, and mucus production, and transgenic overexpression in WT mice exacerbates these phenotypes. Knockout of ß-arrestin-2 (ßarr-2-/-) attenuates the asthma phenotype as in ß2AR-/- mice. In contrast to eosinophilic inflammation, neutrophilic inflammation was not promoted by ß2AR signaling. Together, these results suggest ß2ARs on airway epithelial cells promote the asthma phenotype and that the proinflammatory pathway downstream of the ß2AR involves ßarr-2. These results identify ß2AR signaling in the airway epithelium as capable of controlling integrated responses to IL-13 and affecting the function of other cell types such as airway smooth muscle cells.


Asthma/etiology , Eosinophils/pathology , Epithelial Cells/metabolism , Lung/pathology , Receptors, Adrenergic, beta-2/metabolism , Adrenergic beta-2 Receptor Antagonists/pharmacology , Animals , Asthma/pathology , Bronchi/cytology , Disease Models, Animal , Epinephrine/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/pathology , Humans , Inflammation/metabolism , Inflammation/pathology , Interleukin-13/toxicity , Lung/cytology , Metaplasia , Mice, Inbred C57BL , Mice, Transgenic , Pneumonia/chemically induced , Pneumonia/metabolism , Receptors, Adrenergic, beta-2/genetics , Signal Transduction
3.
Pharmacol Ther ; 143(1): 61-73, 2014 Jul.
Article En | MEDLINE | ID: mdl-24560685

The evidence describing the autonomic innervation of body fat is reviewed with a particular focus on the role of the sympathetic neurotransmitters. In compiling the evidence, a strong case emerges for the interaction between autonomic nerves and perivascular adipose tissue (PVAT). Adipocytes have been shown to express receptors for neurotransmitters released from nearby sympathetic varicosities such as adrenoceptors (ARs), purinoceptors and receptors for neuropeptide Y (NPY). Noradrenaline can modulate both lipolysis (via α2- and ß3-ARs) and lipogenesis (via α1- and ß3-ARs). ATP can inhibit lipolysis (via P1 purinoceptors) or stimulate lipolysis (via P2y purinoceptors). NPY, which can be produced by adipocytes and sympathetic nerves, inhibits lipolysis. Thus the sympathetic triad of transmitters can influence adipocyte free fatty acid (FFA) content. Substance P (SP) released from sensory nerves has also been shown to promote lipolysis. Therefore, we propose a mechanism whereby sympathetic neurotransmission can simultaneously activate smooth muscle cells in the tunica media to cause vasoconstriction and alter FFA content and release from adjacent adipocytes in PVAT. The released FFA can influence endothelial function. Adipocytes also release a range of vasoactive substances, both relaxing and contractile factors, including adiponectin and reactive oxygen species. The action of adipokines (such as adiponectin) and reactive oxygen species (ROS) on cells of the vascular adventitia and nerves has yet to be fully elucidated. We hypothesise a strong link between PVAT and autonomic fibres and suggest that this poorly understood relationship is extremely important for normal vascular function and warrants a detailed study.


Adipose Tissue/innervation , Autonomic Pathways/physiology , Animals , Fatty Acids, Nonesterified/physiology , Humans , Lipolysis , Reactive Oxygen Species/metabolism , Receptors, Adrenergic/physiology , Receptors, Purinergic/physiology , Synaptic Transmission
4.
Methods Mol Biol ; 897: 95-107, 2012.
Article En | MEDLINE | ID: mdl-22674162

The use of fluorescent ligands to analyze receptor distribution is increasing in popularity. This is due to the ever growing number of fluorescent ligands and the increased sensitivity of microscope-based technologies. Image-analysis methods have advanced to a stage where quantification of fluorescent signals is relatively simple (if used appropriately). In this chapter we describe a method of analyzing the 2D and 3D distribution of fluorescent ligands in segments of blood vessels. In addition, we introduce the issues surrounding the accurate analysis of colocalization of two different fluorescent ligands.


Blood Vessels/metabolism , Fluorescent Dyes/metabolism , Image Processing, Computer-Assisted/methods , Microscopy, Confocal/methods , Proteins/metabolism , Animals , Imaging, Three-Dimensional , Ligands , Mice , Protein Binding , Protein Transport
5.
J Physiol ; 584(Pt 1): 5-9, 2007 Oct 01.
Article En | MEDLINE | ID: mdl-17656430

Blood vessels are capable of structural changes in a dynamic process called 'vascular remodelling', which involves cell growth, death, phenotypic change and migration, as well as extracellular matrix synthesis and degradation. An integrated view of the interrelationships of the different elements of the arterial wall is made possible by fluorescence confocal microscopy which enables collection of serial optical sections of relatively thick specimens without the need to cut them as with conventional histology. With the aid of image analysis software, these serial sections can be further reconstructed to obtain 3-D images, where the structures of interest are localized and quantified. Confocal microscopy can be combined with pressure myography to obtain, simultaneously, information on vascular function and 3-D structure at near-to-physiological conditions. There are a vast number of fluorescent compounds useful for imaging vessel structure and function. Nuclear dyes allow the identification of the different types of vascular cells and the quantification of their number, shape and orientation. The speed of confocal image acquisition and processing makes it possible to scan entire intact arteries stained with fluorescent kits or antibodies to locate infrequent events such as cell apoptosis, proliferation or migration. Confocal microscopy is not only useful for imaging vascular wall structure, but also to visualize and quantify, by the intensity of fluorescence, the generation of vascular cell factors such as nitric oxide or superoxide anion. In conclusion, confocal microscopy and image analysis software provide insight into vascular wall structure and function and the active process of vascular remodelling in physiological and pathological situations.


Blood Vessels/anatomy & histology , Adaptation, Physiological , Animals , Blood Vessels/cytology , Blood Vessels/physiology , Extracellular Matrix , Humans , Microscopy, Confocal
6.
Clin Hemorheol Microcirc ; 37(1-2): 205-10, 2007.
Article En | MEDLINE | ID: mdl-17641410

Hypertension is associated with vascular structural alterations known as "vascular remodelling", which initially are adaptive but in the long run, lead to vascular damage and loss of function. Despite decades of study, there is still modest information on the 3-dimensional (3D) arrangement of vascular cells and extracellular matrix (ECM) and how they change under pathological situations. To address this problem we developed a technique which combines fluorescence confocal microscopy, pressure myography and image analysis, "confocal myography", which permits the study of intact resistance-sized vessels at cellular level and at physiological pressure. With the aid of this method, we have identified, in arteries from hypertensive rats, abnormal orientation of endothelial, smooth muscle cells (SMC) and elastic fibres; elongation and denudation of endothelial cells, and adventitial hypercellularity. Confocal myography offers a new approach to the study of vascular remodelling in intact small arteries from a 3D point of view.


Blood Vessels/pathology , Hypertension/pathology , Imaging, Three-Dimensional/methods , Animals , Endothelium, Vascular/pathology , Imaging, Three-Dimensional/instrumentation , Microscopy, Confocal , Muscle, Smooth, Vascular/pathology , Myography/instrumentation , Myography/methods , Rats
7.
Environ Toxicol Pharmacol ; 23(2): 250-3, 2007 Mar.
Article En | MEDLINE | ID: mdl-21783765

Since pyrethroids are involved in reactive oxygen species production and no investigations have yet been performed on smooth muscle cell integrity, we studied the influence of permethrin- and cypermethrin-treatment on rabbit aorta using confocal laser scanning fluorescence microscopy, which allows cell viability to be assessed within the wall of living rabbit aorta. The data obtained show that the pyrethroid-treatment (10-100µM) impairs the smooth muscle cell viability. A double-labeling protocol allowed us to distinguish cytotoxic effects of permethrin- and cypermethrin-treatment in aortic rings. In conclusion, permethrin seems to induce more oxidative stress on the aorta wall than that cypermethrin does.

8.
Am J Physiol Heart Circ Physiol ; 291(2): H804-12, 2006 Aug.
Article En | MEDLINE | ID: mdl-16565305

Resistance artery narrowing and stiffening are key elements in the pathogenesis of essential hypertension, but their origin is not completely understood. In mesenteric resistance arteries (MRA) from spontaneously hypertensive rats (SHR), we have shown that inward remodeling is associated with abnormal elastic fiber organization, leading to smaller fenestrae in the internal elastic lamina. Our current aim is to determine whether this alteration is an early event that precedes vessel narrowing, or if elastic fiber reorganization in SHR arteries occurs because of the remodeling process itself. Using MRA from 10-day-old, 30-day-old, and 6-mo-old SHR and normotensive Wistar Kyoto rats, we investigated the time course of the development of structural and mechanical alterations (pressure myography), elastic fiber organization (confocal microscopy), and amount of elastin (radioimmunoassay for desmosine) and collagen (picrosirius red). SHR MRA had an impairment of fenestrae enlargement during the first month of life. In 30-day-old SHR, smaller fenestrae and more packed elastic fibers in the internal elastic lamina were paralleled by increased wall stiffness. Collagen and elastin levels were unaltered at this age. MRA from 6-mo-old SHR also had smaller fenestrae and a denser network of adventitial elastic fibers, accompanied by increased collagen content and vessel narrowing. At this age, elastase digestion was less effective in SHR MRA, suggesting a lower susceptibility of elastic fibers to enzymatic degradation. These data suggest that abnormal elastic fiber deposition in SHR increases resistance artery stiffness at an early age, which might participate in vessel narrowing later in life.


Animals, Newborn/physiology , Arteries/physiology , Elastic Tissue/physiology , Muscle Fibers, Skeletal/physiology , Vascular Resistance/physiology , Animals , Arteries/cytology , Arteries/growth & development , Collagen/metabolism , Elastin/metabolism , In Vitro Techniques , Male , Mesenteric Arteries/growth & development , Mesenteric Arteries/physiology , Rats , Rats, Inbred SHR , Rats, Inbred WKY
9.
Br J Pharmacol ; 146(7): 942-51, 2005 Dec.
Article En | MEDLINE | ID: mdl-16170328

The role of alpha(1D)-adrenoceptors in vasoconstrictor responses to noradrenaline in mouse femoral resistance arteries was investigated using wire myography in alpha(1D)-adrenoceptor knockout (alpha(1D)-KO) and wild-type (WT) mice of the same genetic background.alpha(1D)-KO mice were 2.5-fold less sensitive than WTs to exogenous noradrenaline and BMY 7378 was significantly less potent against noradrenaline in alpha(1D)-KO mice than in WTs, showing a minor contribution of alpha(1D)-adrenoceptors in response to noradrenaline. Prazosin and 5-methyl-urapidil were equally effective against noradrenaline in alpha(1D)-KO and WT mice. Chloroethylclonidine produced a significantly greater attenuation of the response to noradrenaline in alpha(1D)-KO mice than in WTs. Responses to electrical field stimulation (EFS), at 2-20 Hz for 10 s and 0.09 ms pulse width were significantly smaller overall in alpha(1D)-KOs than in WTs although no significant differences were seen at the different frequencies.BMY 7378 produced significantly greater inhibition of responses at 2 and 5 Hz than at higher frequencies in WTs. In alpha(1D)-KOs, this greater sensitivity to BMY 7378 at lower frequencies was not apparent, confirming that the effect of BMY 7378 was due to blockade of alpha(1D)-adrenoceptors. Prazosin and 5-methyl-urapidil had similar inhibitory effects on responses to EFS in alpha(1D)-KO and WT mice. Chloroethylclonidine inhibited responses to EFS to a significantly greater extent in alpha(1D)-KO mice. The present study with alpha(1D)-KO mice shows that alpha(1D)-adrenoceptors contribute to vasoconstrictor responses to exogenous and neurally released noradrenaline in femoral resistance arteries.


Femoral Artery/physiology , Receptors, Adrenergic, alpha-1/physiology , Vasoconstriction , Animals , Clonidine/analogs & derivatives , Clonidine/pharmacology , Electric Stimulation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Norepinephrine/pharmacology , Vascular Resistance , Vasoconstriction/drug effects
10.
Br J Pharmacol ; 146(5): 679-91, 2005 Nov.
Article En | MEDLINE | ID: mdl-16113691

1 Recent evidence supports additional subtypes of vasodilator beta-adrenoceptor (beta-AR) besides the 'classical' beta(2). The aim of this study was to investigate the distribution of beta-ARs in the wall of rat mesenteric resistance artery (MRA), to establish the relative roles of beta-ARs in smooth muscle and other cell types in mediating vasodilatation and to analyse this in relation to the functional pharmacology. 2 We first examined the vasodilator beta-AR subtype using 'subtype-selective' agonists against the, commonly employed, phenylephrine-induced tone. Concentration-related relaxation was produced by isoprenaline (pEC(50): 7.70+/-0.1) (beta(1) and beta(2)). Salbutamol (beta(2)), BRL 37344 (beta(3)) and CGP 12177 (atypical beta) caused relaxation but were 144, 100 and 263 times less potent than isoprenaline; the 'beta(3)-adrenoceptor agonist' CL 316243 was ineffective. 3 In arteries precontracted with 5-HT or U 46619, isoprenaline produced concentration-related relaxation but salbutamol, BRL 37344, CGP 12177 and CL 316243 did not. SR 59230A, CGP 12177 and BRL 37344 caused a parallel rightward shift in the concentration-response curve to phenylephrine indicating competitive alpha(1)-AR antagonism, explaining the false-positive 'vasodilator' action against phenylephrine-induced tone. Endothelial denudation but not L-NAME slightly attenuated isoprenaline-mediated vasodilatation in phenylephrine and U 46619 precontracted MRA. 4 The beta-AR fluorescent ligand BODIPY TMR-CGP 12177 behaved as an irreversible beta(1)-AR antagonist in MRA and bound to the surface and inside vascular smooth muscle cells in intact vascular wall. Beta-ARs in smooth muscle cells were observed in a perinuclear location, consistent with the location of Golgi and endoplasmic reticulum. 5 Binding of BODIPY TMR-CGP 12177 was inhibited by BAAM (1 microM) in all three vascular tunics, confirming the presence of beta-ARs in adventitia, media and intima. Binding in adventitia was observed in both neuronal and non-neuronal cell types. Lack of co-localisation with a fluorescent ligand for alpha-ARs confirms the selectivity of BODIPY TMR-CGP 12177 for beta-ARs over alpha-ARs. 6 Our results support the presence of functional vasodilator beta(1)-ARs and show that they are mainly located in smooth muscle cells. Furthermore, we have demonstrated, for the first time, the usefulness of BODIPY TMR-CGP 12177 for identifying beta-AR distribution in the 'living' vascular wall.


Mesenteric Arteries/metabolism , Muscle, Smooth, Vascular/metabolism , Receptors, Adrenergic, beta/metabolism , Adrenergic beta-Agonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Animals , Boron Compounds/pharmacology , Cells, Cultured , Dioxoles/pharmacology , Ethanolamines/pharmacology , Imidazoles/pharmacology , Mesenteric Arteries/cytology , Mesenteric Arteries/drug effects , Muscle, Smooth, Vascular/cytology , Phenylephrine/pharmacology , Propanolamines/pharmacology , Rats , Rats, Inbred WKY , Receptors, Adrenergic, beta/physiology , Vasodilation/physiology
11.
Mol Imaging ; 4(1): 40-52, 2005.
Article En | MEDLINE | ID: mdl-15967125

Fluorescent ligands provide the means of studying receptors in whole tissues using confocal laser scanning microscopy and have advantages over antibody- or non-fluorescence-based method. Confocal microscopy provides large volumes of images to be measured. Histogram analysis of 3-D image volumes is proposed as a method of graphically displaying large amounts of volumetric image data to be quickly analyzed and compared. The fluorescent ligand BODIFY FL-prazosin (QAPB) was used in mouse aorta. Histogram analysis reports the amount of ligand-receptor binding under different conditions and the technique is sensitive enough to detect changes in receptor availability after antagonist incubation or generic manipulations. QAPB binding was concentration dependent, causing concentration-related rightward shifts in histogram. In the presence of 10 microM phenoxybenzamine (blocking agent), the QAPB (50 nM) histogram overlaps the autofluorescence curve. The histogram obtained for the 1D knockout aorta lay to the left of that control and 1B knockout aorta, indicating a reduction in 1D receptors. We have shown, for the first time, that it is possible to graphically display binding of a fluorescent drug to a biological tissue. Although our application is specific to adrenergic receptors, the general method could be applied to any volumetric, fluorescence-image-based assay.


Fluorescent Dyes/analysis , Microscopy, Confocal/methods , Prazosin/metabolism , Adrenergic alpha-Antagonists/analysis , Adrenergic alpha-Antagonists/metabolism , Animals , Antibodies/pharmacology , Aorta/drug effects , Aorta/metabolism , Boron Compounds/analysis , Boron Compounds/metabolism , Dose-Response Relationship, Drug , Female , Fluorescent Dyes/metabolism , Imaging, Three-Dimensional/methods , In Vitro Techniques , Male , Mice , Mice, Knockout , Phenoxybenzamine/pharmacology , Prazosin/analysis , Prazosin/chemistry , Receptors, Adrenergic, alpha-1/genetics , Receptors, Adrenergic, alpha-1/immunology , Receptors, Adrenergic, alpha-1/metabolism
12.
Exp Physiol ; 90(4): 469-75, 2005 Jul.
Article En | MEDLINE | ID: mdl-15894533

Conventionally, the architecture of arteries is based around the close-packed smooth muscle cells and extracellular matrix. However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. A new dynamic picture has emerged of blood vessels in a constant state of self-maintenance. Recent work raises fundamental questions about the cellular heterogeneity of arteries and the time course and triggering of normal and pathological remodelling. A common denominator emerging in hypertensive remodelling is an early increase in adventitial cell density suggesting that adventitial cells drive remodelling and may initiate subsequent changes such as re-arrangement of smooth muscle cells and extracellular matrix. The organization of vascular smooth muscle cells follows regular arrangements that can be modelled mathematically. In hypertension, new patterns can be quantified in these terms and give insights to how structure affects function. As with smooth muscle, little is known about the organization of the vascular endothelium, or its role in vascular remodelling. Current observations suggest that there may be a close relationship between the helical organization of smooth muscle cells and the underlying pattern of endothelial cells. The function of myoendothelial connections is a topic of great current interest and may relate to the structure of the internal elastic lamina through which the connections must pass. In hypertensive remodelling this must present an organizational challenge. The objective of this paper is to show how the functions of blood vessels depend on their architecture and a continuous interaction of different cell types and extracellular proteins.


Blood Vessels/cytology , Blood Vessels/physiology , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/physiology , Animals , Arteriosclerosis/pathology , Blood Vessels/pathology , Endothelial Cells/physiology , Endothelium, Vascular/physiology , Extracellular Matrix/physiology , Humans , Hypertension/pathology , Intracellular Membranes/physiology , Muscle, Smooth, Vascular/pathology , Oxidative Stress/physiology , Receptors, Adrenergic, alpha-1/physiology
13.
Microvasc Res ; 69(3): 173-7, 2005 May.
Article En | MEDLINE | ID: mdl-15896359

Conventional techniques to visualise microvascular structure often involve fixed tissue slices that provide two-dimensional images. A previous study using diffusive labelling of fresh, dissected tissue samples with fluorescently-tagged endothelial markers demonstrated the possibility of examining the three-dimensional architecture of the microvasculature using confocal microscopy. The present study extends the use of this quick and simple method of diffusive labelling to examine the possibility of repeatedly measuring changes in the morphology of intact microvessel in response to pharmacological stimuli. Initially, three-dimensional surface-rendered images of the same microvessel derived from the placenta and subcutaneous biopsies demonstrated morphological and topological changes in response to temperature and increasing potassium changes of physiological salt solutions, respectively. Furthermore, a dose-response study was performed with subcutaneous microvessels using the potent vasodilator, adrenomedullin. Analysis of a series of z-stack, superimposed to form a single maximum brightness image, demonstrated an inverse dose-response relationship, with responses to increasing adrenomedullin concentrations (10(-12) to 10(-8) M). In vessels that had constricted in response to noradrenaline (diameters: 22.4 to 58.0 microm), physiological concentrations of 10(-12) M increased vessel diameter by 108% above baseline conditions. Control treatment using physiological salt solution did not demonstrate any changes. The technique described suggest that diffusive labelling with vascular endothelial markers such as ulex europeaus agglutinin I in live tissue samples may be used in conjunction with confocal microscopy to demonstrate heterogeneous morphological and topological changes in intact segments of the microvasculature.


Microscopy, Confocal , Placenta/blood supply , Subcutaneous Tissue/blood supply , Adrenomedullin , Biomarkers/metabolism , Biopsy , Dose-Response Relationship, Drug , Female , Humans , Imaging, Three-Dimensional , Norepinephrine/pharmacology , Peptides/pharmacology , Placenta/drug effects , Placenta/physiology , Placenta/surgery , Plant Lectins/chemistry , Plant Lectins/metabolism , Potassium/pharmacology , Pregnancy , Subcutaneous Tissue/drug effects , Subcutaneous Tissue/physiology , Subcutaneous Tissue/surgery , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology
14.
J Pharmacol Exp Ther ; 314(2): 804-10, 2005 Aug.
Article En | MEDLINE | ID: mdl-15878998

UK-14,304 [5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine]-mediated vasodilator responses were studied on wire myograph-mounted mouse aorta to determine the cells involved, mechanisms of action, and subtypes of alpha(2)-adrenoceptors. In the presence of induced tone, UK-14,304 produced concentration-related vasodilatation that was abolished by rauwolscine, N(omega)-nitro-L-arginine methyl ester (L-NAME), or endothelium removal, indicating that endothelial alpha(2)-adrenoceptors can release nitric oxide. In the alpha(2A)-adrenoceptor knockout mouse and the D79N mouse, a functional knockout of the alpha(2A)-adrenoceptor, these relaxant effects of UK-14,304 were lost, indicating the involvement of the alpha(2A)-adrenoceptor. UK-14,304 could also contract aorta: a small contraction occurred at high concentrations, was enhanced by L-NAME, and was absent in the alpha(1D)-adrenoceptor knockout mouse, indicating activation of the alpha(1D)-adrenoceptor. There was no evidence for a contractile alpha(2)-adrenoceptor-mediated response. A fluorescent ligand, quinazoline piperazine bodipy, antagonized the relaxant action of UK-14,304. This compound could be visualized on aortic endothelial cells, and its binding could be prevented by rauwolscine, providing direct evidence for the presence of alpha(2)-adrenoceptors on the endothelium. Norepinephrine reduced tone in the alpha(1D)-adrenoceptor knockout and controls, an effect blocked by rauwolscine and L-NAME but not by prazosin. This suggests that norepinephrine activates endothelial alpha(2)-adrenoceptors. In conclusion, the endothelium of mouse aorta has an alpha(2A)-adrenoceptor that responds to norepinephrine; promotes the release of nitric oxide, causing smooth muscle relaxation; and that can be directly visualized. Knockout or genetic malfunction of this receptor should increase arterial stiffness, exacerbated by raised catecholamines, and contribute to heart failure.


Aorta, Thoracic/drug effects , Endothelium, Vascular/drug effects , Receptors, Adrenergic, alpha-2/drug effects , Receptors, Adrenergic, alpha-2/genetics , Vasodilation/drug effects , Animals , Brimonidine Tartrate , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Enzyme Inhibitors/pharmacology , Fluorescent Dyes , Image Processing, Computer-Assisted , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Myography , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Norepinephrine/pharmacology , Quinoxalines/pharmacology , Vasoconstrictor Agents/pharmacology
16.
Br J Pharmacol ; 144(4): 558-65, 2005 Feb.
Article En | MEDLINE | ID: mdl-15655508

1. alpha(1)-Adrenoceptor (AR) subtypes in mouse carotid arteries were characterised using a combination of agonist/antagonist pharmacology and knockout (KO) mice. 2. Phenylephrine (PE) was most potent in the alpha(1B)-KO (pEC(50)=6.9+/-0.2) followed by control (pEC(50)=6.3+/-0.06) and alpha(1D)-KO (pEC(50)=5.5+/-0.07). Both N-[5-(4,5-dihydro-1H-imidazol-2yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl] methanesulphonamide hydrobromide (A-61603) and 5-hydroxytryptamine (5-HT) were more potent in the alpha(1D)-KO (pEC(50)=7.4+/-0.27 and 7.4+/-0.05, respectively) than the control (pEC(50)=6.9+/-0.09 and 6.9+/-0.08, respectively) and equipotent with the control in the alpha(1B)-KO (pEC(50)=6.7+/-0.07 and 6.8+/-0.04). Maximum responses to PE and A-61603 were reduced in the alpha(1D)-KO compared to control; there was no difference in maximum responses to 5-HT. 3. In control arteries, prazosin and 5-methylurapidil acted competitively with pA(2) of 9.6 and 7.5, respectively. BMY7378 produced antagonism only at the highest concentration used (100 nM; pK(B) 8.3). 4. Prazosin, 5-methylurapidil and BMY7378 acted competitively in alpha(1B)-KO carotid arteries with pA(2) of 10.3, 7.6 and 9.6, respectively. 5. In the alpha(1D)-KO, against PE, 5-methylurapidil produced a pA(2) of 8.1. pK(B) values were calculated for prazosin (10.6) and BMY7378 (7.0). Against A-61603, 5-methylurapidil had a pA(2) of 8.5, prazosin 8.6, while BMY7378 had no effect. 6. In conclusion, the alpha(1B)-KO mediates contraction solely through alpha(1D)-ARs and the alpha(1D)-KO through alpha(1A)-ARs. Extrapolating back to the control from the knockout data suggests that all three subtypes could be involved in the responses, but we propose that the alpha(1D)-AR causes the contractile response and that the role of the alpha(1B)-AR is mainly regulatory.


Carotid Artery, Common/metabolism , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/metabolism , Receptors, Adrenergic, alpha-1 , Adrenergic alpha-1 Receptor Agonists , Adrenergic alpha-1 Receptor Antagonists , Adrenergic alpha-Agonists/pharmacology , Adrenergic alpha-Antagonists/pharmacology , Animals , Carotid Artery, Common/drug effects , Dose-Response Relationship, Drug , In Vitro Techniques , Male , Mice , Mice, Knockout , Muscle, Smooth, Vascular/drug effects , Rats , Rats, Wistar , Receptors, Adrenergic, alpha-1/genetics
17.
Mol Pharmacol ; 67(4): 992-1004, 2005 Apr.
Article En | MEDLINE | ID: mdl-15626751

The antagonist ligand BODIPY-FL-prazosin (QAPB) fluoresces when bound to bovine alpha(1a)-adrenoceptors (ARs). Data indicate that the receptor-ligand complex is spontaneously internalized by beta-arrestin-dependent endocytosis. Internalization of the ligand did not occur in beta-arrestin-deficient cells; was blocked or reversed by another alpha(1) ligand, phentolamine, indicating it to reflect binding to the orthosteric recognition site; and was prevented by blocking clathrin-mediated endocytosis. The ligand showed rapid, diffuse, low-intensity, surface binding, superseded by punctate intracellular binding that developed to equilibrium in 50 to 60 min and was reversible on ligand removal, indicating a dynamic equilibrium. In cells expressing a human alpha(1a)-AR-enhanced green fluorescent protein (EGFP) 2 fusion protein, BODIPY-R-558/568-prazosin (RQAPB) colocalized with the fusion, indicating that the ligand gained access to all compartments containing the receptor, and, conversely, that the receptor has affinity for the ligand at all of these sites. The distribution of QAPB binding sites was similar for receptors with or without EGFP2, validating the fusion protein as an indicator of receptor location. The ligand partially colocalized with beta-arrestin in recycling and late endosomes, indicating receptor transit without destruction. Organelles containing receptors showed considerable movement consistent with a transportation function. This was absent in beta-arrestin-deficient cells, indicating that both constitutive receptor internalization and subsequent intracellular transportation are beta-arrestin-dependent. Calculations of relative receptor number indicate that at steady state, less than 30% of receptors reside on the cell surface and that recycling is rapid. We conclude that alpha(1a)-ARs recycle rapidly by an agonist-independent, constitutive, beta-arrestin-dependent process and that this can transport "alpha-blockers" into cells carrying these receptors.


Adrenergic alpha-Antagonists/metabolism , Arrestins/physiology , Endocytosis , Receptors, Adrenergic, alpha-1/metabolism , Animals , Biological Transport , Cells, Cultured , Endosomes/metabolism , Humans , Phentolamine/pharmacology , Prazosin/metabolism , Rats , beta-Arrestins
18.
Pharmacol Ther ; 100(2): 101-18, 2003 Nov.
Article En | MEDLINE | ID: mdl-14609715

Fluorescent molecules bound to receptors can show their location and, if binding is reversible, can provide pharmacological information such as affinity and proximity between interacting molecules. The spatial precision offered by visualisation transcends the diverse localisation and low molecular concentration of receptor molecules. Consequently, the relationships between receptor location and function and life cycles of receptors have become better understood as a result of fluorescent labeling. Each of these aspects contributes new insights to drug action and potential new targets. The relationships between spatial distribution of receptor and function are largely unknown. This is particularly apparent for native receptors expressed in their normal host tissues where communication between heterogeneous cell types influences receptor distribution and function. In cultured cell systems, particularly for G-protein-coupled receptors (GPCR), fluorescence-based methods have enabled the visualisation of the cycle of agonist-stimulated receptor clustering, endocytic internalisation to the perinuclear region, degradation of the receptor-ligand complex, and recycling back to the surface membrane. Using variant forms of green fluorescent protein (GFP), antibodies, or fluorescent ligands, it is possible to detect or visualise the formation of oligomeric receptor complexes. Careful selection of fluorescent molecules based on their spectral properties enables resonance energy transfer and multilabel visualisation with colocalisation studies. Fluorescent agonist and antagonist ligands are now being used in parallel with GFP to study receptor cycling in live cells. This review covers how labeling and visualisation technologies have been applied to the study of major pharmacologically important receptors and illustrates this by giving examples of recent techniques that have relied on GFP, antibodies, or fluorescent ligands alone or in combination for the purpose of studying GPCR.


Antibodies/metabolism , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Cells, Cultured , Fluorescence , Fluorescence Resonance Energy Transfer/methods , Green Fluorescent Proteins , Humans , Immunohistochemistry/methods , Ligands , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Structure-Activity Relationship
19.
J Physiol ; 552(Pt 1): 185-95, 2003 Oct 01.
Article En | MEDLINE | ID: mdl-12844513

Chronic hypertension is associated with resistance artery remodelling and mechanical alterations. However, the contribution of elastin has not been thoroughly studied. Our objective was to evaluate the role of elastin in vascular remodelling of mesenteric resistance arteries (MRA) from spontaneously hypertensive rats (SHR). MRA segments from Wistar Kyoto rats (WKY) and SHR were pressurised under passive conditions at a range of physiological pressures with pressure myography. Confocal microscopy was used to determine differences in the quantity and organisation of elastin in intact pressure-fixed arteries. To assess the contribution of elastin to MRA structure and mechanics, myograph-mounted vessels were studied before and after elastase incubation. When compared with WKY, MRA from SHR showed: (1) a smaller lumen, (2) decreased distensibility at low pressures, (3) a leftward shift of the stress-strain relationship, (4) redistribution of elastin within the internal elastic lamina (IEL) leading to smaller fenestrae but no change in fenestrae number or elastin amount. Elastase incubation (1) fragmented the structure of IEL in a concentration-dependent fashion, (2) abolished all the structural and mechanical differences between strains, and (3) decreased distensibility at low pressures. The study shows the overriding role of elastin in determining vascular dimensions and mechanical properties in a resistance artery. In addition, it informs hypertensive remodelling. MRA remodelling and increased stiffness are accompanied by elastin restructuring within the IEL and elastin degradation reverses structural and mechanical alterations of SHR MRA. Differences in elastin organisation are, therefore, a central element in small artery remodelling in hypertension.


Elastin/physiology , Hypertension/physiopathology , Mesenteric Arteries/physiopathology , Animals , Fluorescence , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Vascular Resistance/physiology , Vasodilation/physiology
20.
Physiol Genomics ; 9(2): 85-91, 2002.
Article En | MEDLINE | ID: mdl-12006674

Pharmacological analysis alone has failed to clarify the role of the three alpha(1)-adrenoceptor subtypes in modulating vascular tone, due to a lack of sufficiently selective antagonists, particularly for the alpha (1B)-adrenoceptor, and the complexity when three receptor subtypes are potentially activated by the same agonist. We adopted a combined genetics/ pharmacology strategy based on the alpha(1B)-adrenoceptor knockout (KO) mouse. The potency of three alpha(1)-adrenoceptor antagonists vs. phenylephrine was tested in aorta, carotid, mesenteric, and caudal isolated arteries from KO and wild-type (WT) mice. In the KO mouse the pharmacology became straightforward, showing alpha(1D) in two major conducting arteries (aorta and carotid) and alpha(1A) in two distributing arteries (mesenteric and caudal). By combining antagonist pharmacology and genetics, we provide a simplified analysis of alpha(1)-mediated vasoconstriction, demonstrating that alpha(1D) and alpha(1A) are the major subtypes involved in vasoconstriction, with a minor but definite contribution from alpha(1B) in every vessel.


Receptors, Adrenergic, beta-1/physiology , Vasoconstriction/physiology , Adrenergic beta-1 Receptor Antagonists , Animals , Aorta, Thoracic/physiology , Carotid Arteries/physiology , In Vitro Techniques , Mesenteric Arteries/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenylephrine/pharmacology , Tail/blood supply , Vasoconstrictor Agents/pharmacology
...