Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Exp Neurol ; 379: 114877, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944331

RESUMEN

In an attempt to repair injured central nervous system (CNS) nerves/tracts, immune cells are recruited into the injury site, but endogenous response in adult mammals is insufficient for promoting regeneration of severed axons. Here, we found that a portion of retinal ganglion cell (RGC) CNS projection neurons that survive after optic nerve crush (ONC) injury are enriched for and upregulate fibronectin (Fn)-interacting integrins Itga5 and ItgaV, and that Fn promotes long-term survival and long-distance axon regeneration of a portion of axotomized adult RGCs in culture. We then show that, Fn is developmentally downregulated in the axonal tracts of optic nerve and spinal cord, but injury-activated macrophages/microglia upregulate Fn while axon regeneration-promoting zymosan augments their recruitment (and thereby increases Fn levels) in the injured optic nerve. Finally, we found that Fn's RGD motif, established to interact with Itga5 and ItgaV, promotes long-term survival and long-distance axon regeneration of adult RGCs after ONC in vivo, with some axons reaching the optic chiasm when co-treated with Rpl7a gene therapy. Thus, experimentally augmenting Fn levels in the injured CNS is a promising approach for therapeutic neuroprotection and axon regeneration of at least a portion of neurons.


Asunto(s)
Axones , Fibronectinas , Regeneración Nerviosa , Traumatismos del Nervio Óptico , Células Ganglionares de la Retina , Animales , Regeneración Nerviosa/fisiología , Fibronectinas/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Axones/patología , Axones/fisiología , Ratones , Células Ganglionares de la Retina/metabolismo , Ratones Endogámicos C57BL , Células Cultivadas , Integrina alfa5/metabolismo , Integrina alfa5/genética , Compresión Nerviosa , Femenino
2.
Exp Neurol ; 368: 114510, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633482

RESUMEN

Ribosomal proteins are involved in neurodevelopment and central nervous system (CNS) disease and injury. However, the roles of specific ribosomal protein subunits in developmental axon growth, and their potential as therapeutic targets for treating CNS injuries, are still poorly understood. Here, we show that ribosomal protein large (Rpl) and small (Rps) subunit genes are substantially (56-fold) enriched amongst the genes, which are downregulated during maturation of retinal ganglion cell (RGC) CNS projection neurons. We also show that Rpl and Rps subunits are highly co-regulated in RGCs, and partially re-upregulated after optic nerve crush (ONC). Because developmental downregulation of ribosomal proteins coincides with developmental decline in neuronal intrinsic axon growth capacity, we hypothesized that Rpl/Rps incomplete re-upregulation after injury may be a part of the cellular response which attempts to reactivate intrinsic axon growth mechanisms. We found that experimentally upregulating Rpl7 and Rpl7A promoted axon regeneration after ONC in vivo. Finally, we characterized gene networks associated with Rpl/Rps, and showed that Rpl7 and Rpl7A belong to the cluster of genes, which are shared between translational and neurodevelopmental biological processes (based on gene-ontology) that are co-downregulated in maturing RGCs during the decline in intrinsic axon growth capacity.


Asunto(s)
Axones , Regeneración Nerviosa , Regulación hacia Arriba , Regeneración Nerviosa/genética , Activación Transcripcional , Proteínas Ribosómicas/genética
3.
Brain Res ; 1809: 148368, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059258

RESUMEN

Collapsin response mediator proteins (Crmps) play roles in neuronal development and axon growth. However, neuronal-specific roles of Crmp1, Crmp4, and Crmp5 in regeneration of injured central nervous system (CNS) axons in vivo are unclear. Here, we analyzed developmental and subtype-specific expression of Crmp genes in retinal ganglion cells (RGCs), tested whether overexpressing Crmp1, Crmp4, or Crmp5 in RGCs through localized intralocular AAV2 delivery promotes axon regeneration after optic nerve injury in vivo, and characterized developmental co-regulation of gene-concept networks associated with Crmps. We found that all Crmp genes are developmentally downregulated in RGCs during maturation. However, while Crmp1, Crmp2, and Crmp4 were expressed to a varying degree in most RGC subtypes, Crmp3 and Crmp5 were expressed only in a small subset of RGC subtypes. We then found that after optic nerve injury, Crmp1, Crmp4, and Crmp5 promote RGC axon regeneration to varying extents, with Crmp4 promoting the most axon regeneration and also localizing to axons. We also found that Crmp1 and Crmp4, but not Crmp5, promote RGC survival. Finally, we found that Crmp1, Crmp2, Crmp4, and Crmp5's ability to promote axon regeneration is associated with neurodevelopmental mechanisms, which control RGC's intrinsic axon growth capacity.


Asunto(s)
Traumatismos del Nervio Óptico , Células Ganglionares de la Retina , Humanos , Células Ganglionares de la Retina/metabolismo , Axones/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Regeneración Nerviosa/fisiología , Expresión Génica , Supervivencia Celular
4.
Development ; 150(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37039265

RESUMEN

Central nervous system projection neurons fail to spontaneously regenerate injured axons. Targeting developmentally regulated genes in order to reactivate embryonic intrinsic axon growth capacity or targeting pro-growth tumor suppressor genes such as Pten promotes long-distance axon regeneration in only a small subset of injured retinal ganglion cells (RGCs), despite many RGCs regenerating short-distance axons. A recent study identified αRGCs as the primary type that regenerates short-distance axons in response to Pten inhibition, but the rare types which regenerate long-distance axons, and cellular features that enable such response, remained unknown. Here, we used a new method for capturing specifically the rare long-distance axon-regenerating RGCs, and also compared their transcriptomes with embryonic RGCs, in order to answer these questions. We found the existence of adult non-α intrinsically photosensitive M1 RGC subtypes that retained features of embryonic cell state, and showed that these subtypes partially dedifferentiated towards an embryonic state and regenerated long-distance axons in response to Pten inhibition. We also identified Pten inhibition-upregulated mitochondria-associated genes, Dynlt1a and Lars2, which promote axon regeneration on their own, and thus present novel therapeutic targets.


Asunto(s)
Aminoacil-ARNt Sintetasas , Traumatismos del Nervio Óptico , Aminoacil-ARNt Sintetasas/metabolismo , Axones/fisiología , Mitocondrias , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Células Ganglionares de la Retina/metabolismo
5.
Development ; 150(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36971369

RESUMEN

Failure of central nervous system projection neurons to spontaneously regenerate long-distance axons underlies irreversibility of white matter pathologies. A barrier to axonal regenerative research is that the axons regenerating in response to experimental treatments stall growth before reaching post-synaptic targets. Here, we test the hypothesis that the interaction of regenerating axons with live oligodendrocytes, which were absent during developmental axon growth, contributes to stalling axonal growth. To test this hypothesis, first, we used single cell RNA-seq (scRNA-seq) and immunohistology to investigate whether post-injury born oligodendrocytes incorporate into the glial scar after optic nerve injury. Then, we administered demyelination-inducing cuprizone and stimulated axon regeneration by Pten knockdown (KD) after optic nerve crush. We found that post-injury born oligodendrocyte lineage cells incorporate into the glial scar, where they are susceptible to the demyelination diet, which reduced their presence in the glial scar. We further found that the demyelination diet enhanced Pten KD-stimulated axon regeneration and that localized cuprizone injection promoted axon regeneration. We also present a resource for comparing the gene expression of scRNA-seq-profiled normal and injured optic nerve oligodendrocyte lineage cells.


Asunto(s)
Axones , Enfermedades Desmielinizantes , Humanos , Axones/fisiología , Gliosis/metabolismo , Gliosis/patología , Cuprizona , Regeneración Nerviosa/fisiología , Células Ganglionares de la Retina/metabolismo , Oligodendroglía , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo
6.
Cell Chem Biol ; 27(6): 698-707.e7, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32243812

RESUMEN

Escherichia coli broadly colonize the intestinal tract of humans and produce a variety of small molecule signals. However, many of these small molecules remain unknown. Here, we describe a family of widely distributed bacterial metabolites termed the "indolokines." In E. coli, the indolokines are upregulated in response to a redox stressor via aspC and tyrB transaminases. Although indolokine 1 represents a previously unreported metabolite, four of the indolokines (2-5) were previously shown to be derived from indole-3-carbonyl nitrile (ICN) in the plant pathogen defense response. We show that the indolokines are produced in a convergent evolutionary manner relative to plants, enhance E. coli persister cell formation, outperform ICN protection in an Arabidopsis thaliana-Pseudomonas syringae infection model, trigger a hallmark plant innate immune response, and activate distinct immunological responses in primary human tissues. Our molecular studies link a family of cellular stress-induced metabolites to defensive responses across bacteria, plants, and humans.


Asunto(s)
Escherichia coli/metabolismo , Indoles/metabolismo , Regulación hacia Arriba , Animales , Arabidopsis/metabolismo , Escherichia coli/citología , Heces/microbiología , Humanos , Indoles/química , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Estrés Oxidativo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA