Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 1004138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911412

RESUMEN

Introduction: Components of the immune response have previously been associated with the pathophysiology of atopic dermatitis (AD), specifically the Human Leukocyte Antigen (HLA) Class II region via genome-wide association studies, however the exact elements have not been identified. Methods: This study examines the genetic variation of HLA Class II genes using next generation sequencing (NGS) and evaluates the resultant amino acids, with particular attention on binding site residues, for associations with AD. The Genetics of AD cohort was used to evaluate HLA Class II allelic variation on 464 subjects with AD and 384 controls. Results: Statistically significant associations with HLA-DP α and ß alleles and specific amino acids were found, some conferring susceptibility to AD and others with a protective effect. Evaluation of polymorphic residues in DP binding pockets revealed the critical role of P1 and P6 (P1: α31M + (ß84G or ß84V) [protection]; α31Q + ß84D [susceptibility] and P6: α11A + ß11G [protection]) and were replicated with a national cohort of children consisting of 424 AD subjects. Independently, AD susceptibility-associated residues were associated with the G polymorphism of SNP rs9277534 in the 3' UTR of the HLA-DPB1 gene, denoting higher expression of these HLA-DP alleles, while protection-associated residues were associated with the A polymorphism, denoting lower expression. Discussion: These findings lay the foundation for evaluating non-self-antigens suspected to be associated with AD as they potentially interact with particular HLA Class II subcomponents, forming a complex involved in the pathophysiology of AD. It is possible that a combination of structural HLA-DP components and levels of expression of these components contribute to AD pathophysiology.

2.
HLA ; 102(2): 192-205, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36999238

RESUMEN

HLA allelic variation has been well studied and documented in many parts of the world. However, African populations have been relatively under-represented in studies of HLA variation. We have characterized HLA variation from 489 individuals belonging to 13 ethnically diverse populations from rural communities from the African countries of Botswana, Cameroon, Ethiopia, and Tanzania, known to practice traditional subsistence lifestyles using next generation sequencing (Illumina) and long-reads from Oxford Nanopore Technologies. We identified 342 distinct alleles among the 11 HLA targeted genes: HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, -DQA1, -DQB1, -DPA1, and -DPB1, with 140 of those alleles containing novel sequences that were submitted to the IPD-IMGT/HLA database. Sixteen of the 140 alleles contained novel content within the exonic regions of the genes, while 110 alleles contained novel intronic variants. Four alleles were found to be recombinants of already described HLA alleles and 10 alleles extended the sequence content of already described alleles. All 140 alleles include complete allelic sequence from the 5' UTR to the 3' UTR that are inclusive of all exons and introns. This report characterizes the HLA allelic variation from these individuals and describes the novel allelic variation present within these specific African populations.


Asunto(s)
Genes MHC Clase II , Genómica , Humanos , Alelos , África del Sur del Sahara
3.
HLA ; 101(3): 307-309, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36412220

RESUMEN

DPA1*01:03:01:57 and DPA1*02:01:01:29 differ by a single nucleotide from their closest references, DPA1*01:03:01:02 and DPA1*02:01:01:06.


Asunto(s)
Dermatitis Atópica , Humanos , Estudios de Casos y Controles , Dermatitis Atópica/genética , Alelos , Cadenas alfa de HLA-DP/genética
4.
Hum Immunol ; 82(8): 593-599, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33875297

RESUMEN

Atopic dermatitis (AD) is a common immune-medicated skin disease. Previous studies have explored the relationship between Human Leukocyte Antigen (HLA) allelic variation and AD with conflicting results. The aim was to examine HLA Class I genetic variation, specifically peptide binding groove variation, and associations with AD. A case-control study was designed to evaluate HLA class I allelic variation and binding pocket polymorphisms, using next generation sequencing on 464 subjects with AD and 388 without AD. Logistic regression was used to evaluate associations with AD by estimating odds ratios (95% confidence intervals). Significant associations were noted with susceptibility to AD (B*53:01) and protection from AD (A*01:01, A*02:01, B*07:02 and C*07:02). Evaluation of polymorphic residues in Class I binding pockets revealed six amino acid residues conferring protection against AD: A9F (HLA-A, position 9, phenylalanine) [pocket B/C], A97I [pocket C/E], A152V [pocket E], A156R [pocket D/E], B163E [pocket A] and C116S [pocket F]. These findings demonstrate that specific HLA class I components are associated with susceptibility or protection from AD. Individual amino acid residues are relevant to protection from AD and set the foundation for evaluating potential HLA Class I molecules in complex with peptides/antigens that may initiate or interfere with T-cell responses.


Asunto(s)
Dermatitis Atópica/genética , Predisposición Genética a la Enfermedad , Variación Genética , Antígenos de Histocompatibilidad Clase I/genética , Alelos , Estudios de Casos y Controles , Dermatitis Atópica/diagnóstico , Frecuencia de los Genes , Estudios de Asociación Genética , Genotipo , Antígenos de Histocompatibilidad Clase I/química , Humanos , Modelos Moleculares , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Conformación Proteica , Análisis de Secuencia de ADN , Relación Estructura-Actividad
5.
J Autism Dev Disord ; 51(4): 1406-1416, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32748193

RESUMEN

Although water-based approaches have been shown to be beneficial for children with Autism Spectrum Disorder (ASD), no study thus far has directly investigated the effects of such intervention programs on language skills. The present study aims to evaluate the efficacy of the Aquatic Speech and Language Therapy (ASLT) program, which is a new, exclusively aquatic intervention program designed especially for children with ASD. The effects of ASLT were compared to the outcome of a similar classroom-based intervention, in two groups of children with ASD matched for age, gender, and expressive/receptive vocabulary. Our findings show that ASLT results in significantly greater improvement of vocabulary measures, thus providing direct evidence of water-based intervention's beneficial effects on language skills in ASD.


Asunto(s)
Trastorno del Espectro Autista/terapia , Lenguaje Infantil , Terapia del Lenguaje/métodos , Logopedia/métodos , Piscinas , Natación/fisiología , Trastorno del Espectro Autista/psicología , Niño , Preescolar , Femenino , Humanos , Terapia del Lenguaje/psicología , Masculino , Habla/fisiología , Logopedia/psicología , Natación/psicología , Vocabulario
6.
HLA ; 96(4): 430-444, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32681760

RESUMEN

We have developed a protocol regarding the genomic characterization of the MICA gene by next generation sequencing (NGS). The amplicon includes the full length of the gene and is about 13 kb. A total of 156 samples were included in the study. Ninety-seven of these samples were previously characterized at MICA by legacy methods (Sanger or sequence specific oligonucleotide) and were used to evaluate the accuracy, precision, specificity, and sensitivity of the assay. An additional 59 DNA samples of unknown ethnicity volunteers from the United States were only genotyped by NGS. Samples were chosen to contain a diverse set of alleles. Our NGS approach included a first round of sequencing on the Illumina MiSeq platform and a second round of sequencing on the MinION platform by Oxford Nanopore Technology (ONT), on selected samples for the purpose of either characterizing new alleles or setting phase among multiple polymorphisms to resolve ambiguities or generate complete sequence for alleles that were only partially reported in the IMGT/HLA database. Complete consensus sequences were generated for every allele sequenced with ONT, extending from the 5' untranslated region (UTR) to the 3' UTR of the MICA gene. Thirty-two MICA sequences were submitted to the IMGT/HLA database including either new alleles or filling up the gaps (exonic, intronic and/or UTRs) of already reported alleles. Some of the challenges associated with the characterization of these samples are discussed.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Alelos , Genotipo , Humanos , Análisis de Secuencia de ADN
7.
Hum Immunol ; 81(8): 413-422, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32595056

RESUMEN

The comprehensive characterization of human leukocyte antigen (HLA) genomic sequences remains a challenging problem. Despite the significant advantages of next-generation sequencing (NGS) in the field of Immunogenetics, there has yet to be a single solution for unambiguous, accurate, simple, cost-effective, and timely genotyping necessary for all clinical applications. This report demonstrates the benefits of nanopore sequencing introduced by Oxford Nanopore Technologies (ONT) for HLA genotyping. Samples (n = 120) previously characterized at high-resolution three-field (HR-3F) for 11 loci were assessed using ONT sequencing paired to a single-plex PCR protocol (Holotype) and to two multiplex protocols OmniType (Omixon) and NGSgo®-MX6-1 (GenDx). The results demonstrate the potential of nanopore sequencing for delivering accurate HR-3F typing with a simple, rapid, and cost-effective protocol. The protocol is applicable to time-sensitive applications, such as deceased donor typings, enabling better assessments of compatibility and epitope analysis. The technology also allows significantly shorter turnaround time for multiple samples at a lower cost. Overall, the nanopore technology appears to offer a significant advancement over current next-generation sequencing platforms as a single solution for all HLA genotyping needs.


Asunto(s)
Técnicas de Genotipaje/métodos , Antígenos HLA/genética , Secuenciación de Nanoporos/métodos , Alelos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Prueba de Histocompatibilidad/métodos , Humanos , Análisis de Secuencia de ADN/métodos , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...