Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Transl Sci ; 17(1): e13668, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037826

RESUMEN

First-in-human dose predictions are primarily based on no-observed-adverse-effect levels in animal studies. Predictions from these animal models are only as effective as their ability to predict human results. To narrow the gap between human and animals, researchers have, among other things, focused on the replacement of animal cytochrome P450 (CYP) enzymes with their human counterparts (called humanization), especially in mice. Whereas research in humanized mice is extensive, the emphasis has been particularly on qualitative rather than quantitative predictions. Because the CYP3A4 enzyme is most involved in the metabolism of clinically used drugs, most benefit was expected from CYP3A4 models. There are several applications of these mouse models regarding in vivo CYP3A4 functionality, one of which might be their capacity to help improve first-in-human (FIH) dose predictions for CYP3A4-metabolized drugs. To evaluate whether human-CYP3A4-transgenic mouse models are better predictors of human exposure compared to the wild-type mouse model, we performed a meta-analysis comparing both mouse models in their ability to accurately predict human exposure of small-molecule drugs metabolized by CYP3A4. Results showed that, in general, the human-CYP3A4-transgenic mouse model had similar accuracy in the prediction of human exposure compared to the wild-type mouse model, suggesting that there is limited added value in humanization of the mouse Cyp3a enzymes if the primary aim is to acquire more accurate FIH dose predictions. Despite the results of this meta-analysis, corrections for interspecies differences through extension of human-CYP3A4-transgenic mouse models with pharmacokinetic modeling approaches seems a promising contribution to more accurate quantitative predictions of human pharmacokinetics.


Asunto(s)
Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450 , Humanos , Ratones , Animales , Citocromo P-450 CYP3A/metabolismo , Ratones Transgénicos , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Animales , Interacciones Farmacológicas
2.
CPT Pharmacometrics Syst Pharmacol ; 12(12): 1931-1944, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37798909

RESUMEN

Limited information is available concerning infant exposure and safety when breastfed by mothers receiving chemotherapy. Whereas defining distribution to breast milk is important to infer drug exposure, infant pharmacokinetics also determine to what extent the infant will be exposed to potential toxic effects. We aimed to assess the impact of chemotherapy containing breast milk on infants by predicting systemic and local (intestinal) exposure of paclitaxel and doxorubicin in infants through breast milk using a physiologically-based pharmacokinetic (PBPK) approach. Whole-body PBPK models of i.v. paclitaxel and doxorubicin were extended from the literature, with an oral absorption component to enable predictions in infants receiving paclitaxel or doxorubicin-containing breast milk. For safety considerations, worst-case scenarios were explored. Finally, paclitaxel and doxorubicin exposures in plasma and intestinal tissue of infants following feeding of breast milk from paclitaxel- or doxorubicin-treated mothers were simulated and breast milk discarding strategies were evaluated. The upper 95th percentile of the predicted peak concentrations in peripheral venous blood were 3.48 and 0.74 nM (0.4%-1.7% and 0.1%-1.8% of on-treatment) for paclitaxel and doxorubicin, respectively. Intestinal exposure reached peak concentrations of 1.0 and 140 µM for paclitaxel and doxorubicin, respectively. Discarding breast milk for the first 3 days after maternal chemotherapy administration reduced systemic and tissue exposures even further, to over 90% and 80% for paclitaxel and doxorubicin, respectively. PBPK simulations of chemotherapy exposure in infants after breastfeeding with chemotherapy containing breast milk suggest that particularly local gastrointestinal adverse events should be monitored, whereas systemic adverse events are not expected.


Asunto(s)
Leche Humana , Paclitaxel , Lactante , Femenino , Humanos , Paclitaxel/farmacocinética , Lactancia Materna , Doxorrubicina/efectos adversos , Madres
3.
Biomed Pharmacother ; 166: 115354, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37625324

RESUMEN

Nivolumab is an immunotherapeutic monoclonal antibody (mAb) that is used for the treatment of several types of cancer. The evidence on its use during lactation is lacking. Here, we report on a 39-year-old woman with metastasized melanoma who was treated with 480 mg nivolumab every four weeks during lactation. Breast milk samples were collected over the course of 34 days, including two cycles of nivolumab. The highest measured concentration of nivolumab during the first cycle was 503 ng/mL at day 13. The cumulative relative infant dose (RID) over the first cycle (28 days) was 9.8 %. The highest overall measured nivolumab concentration was 519 ng/mL at day 33, five days after administration of the second nivolumab cycle. Nivolumab seems to accumulate in breast milk over two consecutive cycles, hence the RIDs of consecutive cycles are expected to be higher. To draw further conclusions regarding safety of breastfeeding during nivolumab therapy, more information about the oral bioavailability of nivolumab in newborns, the nivolumab steady-state concentrations in breast milk and its pharmacodynamic effects are needed.


Asunto(s)
Melanoma , Nivolumab , Recién Nacido , Femenino , Lactante , Humanos , Adulto , Leche Humana , Anticuerpos Monoclonales/efectos adversos , Lactancia
4.
Clin Pharmacokinet ; 62(7): 969-980, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37154994

RESUMEN

BACKGROUND AND OBJECTIVE: Information on the distribution of chemotherapeutic drugs to breast milk is scarce, and reports are limited to small sample sizes. Anecdotal pharmacokinetic data have typically been acquired from lactating but non-breastfeeding patients who collect breast milk by means of an expression pump, which might not necessarily be representative for a breastfeeding population due to differences in milk production. Consequently, little is known about the variability of chemotherapy distribution to breast milk and the effect of milk production on the distribution of chemotherapy to breast milk. Our aim was to predict chemotherapy distribution to breast milk in a more realistic breastfeeding population and evaluate the effect of discarding breast milk on the potential chemotherapy exposure in infants. METHODS: We developed a population pharmacokinetic model that described the breast milk production and the chemotherapy distribution to breast milk of a non-breastfeeding population, linked it to plasma pharmacokinetics, and extrapolated this to a breastfeeding population. RESULTS: We found that cumulative relative infant doses (RID) were higher than 10% for cyclophosphamide and doxorubicin and approximately 1% for paclitaxel. Simulations allowed us to predict the cumulative RID and its variability in the population for patients with different milk productions and the amount of breast milk that has to be discarded to reach cumulative RIDs below 1%, 0.1%, and 0.01%. Discarding 1-2, 3-6, and 0-1 days of breast milk (depending on the milk production of the patient) resulted in cumulative RID below 1% for cyclophosphamide, doxorubicin, and paclitaxel, respectively. CONCLUSION: Our results may help clinicians to derive the optimal breast milk discarding strategy for an individual patient that wants to breastfeed during chemotherapy and minimize chemotherapy exposure in their infants.


Asunto(s)
Quimioterapia , Farmacocinética , Medicina de Precisión , Leche Humana , Lactancia Materna , Humanos , Femenino , Desarrollo de Medicamentos
5.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35890158

RESUMEN

The extrapolation of drug exposure between species remains a challenging step in drug development, contributing to the low success rate of drug approval. As a consequence, extrapolation of toxicology from animal models to humans to evaluate safe, first-in-human (FIH) doses requires high safety margins. We hypothesized that a human-CYP3A4-expressing transgenic (Cyp3aXAV) mouse is a more predictive model for human drug exposure of CYP3A4-metabolized small-molecule drugs. Population pharmacokinetic models based on wild-type (WT) and Cyp3aXAV mouse pharmacokinetic data of oral lorlatinib, brigatinib, ribociclib and fisogatinib were allometrically scaled and compared to human exposure. Extrapolation of the Cyp3aXAV mouse model closely predicted the observed human exposure for lorlatinib and brigatinib with a 1.1-fold and 1.0-fold difference, respectively, compared to a 2.1-fold and 1.9-fold deviation for WT-based extrapolations of lorlatinib and brigatinib, respectively. For ribociclib, the extrapolated WT mouse model gave better predictions with a 1.0-fold deviation compared to a 0.3-fold deviation for the extrapolated Cyp3aXAV mouse model. Due to the lack of a human population pharmacokinetic model for fisogatinib, only median maximum concentration ratios were calculated, resulting in ratios of 1.0 and 0.6 for WT and Cyp3aXAV mice extrapolations, respectively. The more accurate predictions of human exposure in preclinical research based on the Cyp3aXAV mouse model can ultimately result in FIH doses associated with improved safety and efficacy and in higher success rates in drug development.

6.
Clin Pharmacol Ther ; 112(2): 404-410, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35486426

RESUMEN

Little is known about infant's safety of chemotherapy during breastfeeding where evidence is limited to a few case reports. This lack of knowledge has led to a general tendency to advise against breastfeeding during cytotoxic therapy despite the overwhelming benefits that breastfeeding offers to both the mothers and their children. In this case series, the presence of five chemotherapies in breast milk was determined. The aim was to obtain insight into the presence of these drugs in breast milk to inform and help clinicians in making informed decisions for women who want to breastfeed. Three patients collected 24-hour samples of breast milk every day for 1, 2, or 3 weeks after chemotherapy, 210 in total. After determination of drug concentrations, the infant daily dose, relative daily infant dose (RID%) and cumulative RID were calculated. Cumulative RIDs in patients varied from 10% to values lower than 1%. Rich data allowed us to design a table which gives predictions on the amount of days that breast milk has to be discarded to reach cumulative RIDs below 5, 1, and 0.1% for each compound. For cyclophosphamide, paclitaxel, and carboplatin, cumulative RIDs below 1 or 0.1% are reached if breast milk is discarded for 1-3 days after administration. This might suggest that breastfeeding in between cycles is an option. However, other pharmacological parameters should also be taken into consideration. For doxorubicin, also the levels of the active metabolite doxorubicinol need quantification. Similarly, breastfeeding during treatment with cisplatin might give substantial exposure and we advise caution.


Asunto(s)
Lactancia Materna , Leche Humana , Niño , Femenino , Humanos , Lactante , Madres
7.
J Pharm Sci ; 111(2): 495-504, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34563535

RESUMEN

The effect of transporters and enzymes on drug pharmacokinetics is increasingly evaluated using genetically modified animals that have these proteins either knocked-out or their human orthologues transgenically expressed. Analysis of pharmacokinetic data obtained in such experiments is typically performed using non-compartmental analysis (NCA), which has limitations such as not being able to identify the PK parameter that is affected by the genetic modification of the enzymes or transporters and the requirement of intense and homogeneous sampling of all subjects. Here we used a compartmental population pharmacokinetic modeling approach using PK data from a series of genetically modified mouse experiments with lorlatinib to extend the results and conclusions from previously reported NCA analyses. A compartmental population pharmacokinetic model was built and physiologically plausible covariates were evaluated for the different mouse strains. With the model, similar effects of the strains on the area under the concentration-time curve (AUC) from 0 to 8 hours were found as for the NCA. Additionally, the differences in AUC between the strains were explained by specific effects on clearance and bioavailability for the strain with human expressing CYP3A4. Finally, effects of multidrug efflux transporters ATP-binding cassette (ABC) sub-family B member 1 (ABCB1) and G member 2 (ABCG2) on brain efflux were quantified. Use of compartmental population PK modeling yielded additional insight into the role of drug-metabolizing enzymes and drug transporters in mouse experiments compared to the NCA. Furthermore, these models allowed analysis of heterogeneous pooled datasets and the sparse organ concentration data in contrast to classical NCA analyses.


Asunto(s)
Lactamas , Pirazoles , Aminopiridinas , Animales , Humanos , Lactamas Macrocíclicas/metabolismo , Ratones
8.
Clin Pharmacol Drug Dev ; 10(6): 607-621, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33021083

RESUMEN

ModraPac001 (MP1) and ModraPac005 (MP5) are novel oral paclitaxel formulations that are coadministered with the cytochrome P450 3A4 inhibitor ritonavir (r), enabling daily low-dose metronomic (LDM) treatment. The primary aim of this study was to determine the safety, pharmacokinetics and maximum tolerated dose (MTD) of MP1/r and MP5/r. The second aim was to establish the recommended phase 2 dose (RP2D) as LDM treatment. This was an open-label phase 1 trial. Patients with advanced solid tumors were enrolled according to a classical 3+3 design. After initial employment of the MP1 capsule, the MP5 tablet was introduced. Safety was assessed using the Common Terminology Criteria for Adverse Events version 4.02. Pharmacokinetic sampling was performed on days 1, 2, 8, and 22 for determination of paclitaxel and ritonavir plasma concentrations. In this study, 37 patients were treated with up to twice-daily 30-mg paclitaxel combined with twice-daily 100-mg ritonavir (MP5/r 30-30/100-100) in 9 dose levels. Dose-limiting toxicities were nausea, (febrile) neutropenia, dehydration and vomiting. At the MTD/RP2D of MP5/r 20-20/100-100, the maximum paclitaxel plasma concentration and area under the concentration-time curve until 24 hours were 34.6 ng/mL (coefficient of variation, 79%) and 255 ng • h/mL (coefficient of variation, 62%), respectively. Stable disease was observed as best response in 15 of 31 evaluable patients. Based on these results, LDM therapy with oral paclitaxel coadministrated with ritonavir was considered feasible and safe. The MTD and RP2D were determined as MP5/r 20-20/100-100. Further clinical development of MP5/r as an LDM concept, including potential combination treatment, is warranted.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias/tratamiento farmacológico , Administración Oral , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Área Bajo la Curva , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Femenino , Humanos , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Paclitaxel/administración & dosificación , Ritonavir/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...