Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 88: 129288, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37094724

RESUMEN

NIMA Related Kinase 2 (Nek2) kinase is an attractive target for the development of therapeutic agents for several types of highly invasive cancers. Despite this, no small molecule inhibitor has advanced to the late clinical stages thus far. In this work, we have identified a novel spirocyclic inhibitor (V8) of Nek2 kinase, utilizing a high-throughput virtual screening (HTVS) approach. Using recombinant Nek2 enzyme assays, we show that V8 can inhibit Nek2 kinase activity (IC50 = 2.4 ± 0.2 µM) by binding to the enzyme's ATP pocket. The inhibition is selective, reversible and is not time dependent. To understand the key chemotype features responsible for Nek2 inhibition, a detailed structure-activity relationships (SAR) was performed. Using molecular models of the energy-minimized structures of Nek2-inhibitory complexes, we identify key hydrogen-bonding interactions, including two from the hinge-binding region, likely responsible for the observed affinity. Finally, using cell-based studies, we show that V8 attenuates (a) pAkt/PI3 Kinase signaling in a dose-dependent manner, and (b) proliferative and migratory phenotypes of highly aggressive human MDA-MB-231 breast and A549 lung cancer cell lines. Thus, V8 is an important novel lead compound for the development of highly potent and selective Nek2 inhibitory agents.


Asunto(s)
Quinasas Relacionadas con NIMA , Humanos , Línea Celular Tumoral , Neoplasias Pulmonares , Modelos Moleculares , Quinasas Relacionadas con NIMA/antagonistas & inhibidores , Fosforilación , Relación Estructura-Actividad
2.
Molecules ; 27(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35056661

RESUMEN

Cell cycle kinases represent an important component of the cell machinery that controls signal transduction involved in cell proliferation, growth, and differentiation. Nek2 is a mitotic Ser/Thr kinase that localizes predominantly to centrosomes and kinetochores and orchestrates centrosome disjunction and faithful chromosomal segregation. Its activity is tightly regulated during the cell cycle with the help of other kinases and phosphatases and via proteasomal degradation. Increased levels of Nek2 kinase can promote centrosome amplification (CA), mitotic defects, chromosome instability (CIN), tumor growth, and cancer metastasis. While it remains a highly attractive target for the development of anti-cancer therapeutics, several new roles of the Nek2 enzyme have recently emerged: these include drug resistance, bone, ciliopathies, immune and kidney diseases, and parasitic diseases such as malaria. Therefore, Nek2 is at the interface of multiple cellular processes and can influence numerous cellular signaling networks. Herein, we provide a critical overview of Nek2 kinase biology and discuss the signaling roles it plays in both normal and diseased human physiology. While the majority of research efforts over the last two decades have focused on the roles of Nek2 kinase in tumor development and cancer metastasis, the signaling mechanisms involving the key players associated with several other notable human diseases are highlighted here. We summarize the efforts made so far to develop Nek2 inhibitory small molecules, illustrate their action modalities, and provide our opinion on the future of Nek2-targeted therapeutics. It is anticipated that the functional inhibition of Nek2 kinase will be a key strategy going forward in drug development, with applications across multiple human diseases.


Asunto(s)
Enfermedades Óseas/patología , Inhibidores Enzimáticos/farmacología , Enfermedades del Sistema Inmune/patología , Enfermedades Renales/patología , Malaria/patología , Quinasas Relacionadas con NIMA/antagonistas & inhibidores , Neoplasias/patología , Enfermedades Óseas/tratamiento farmacológico , Enfermedades Óseas/enzimología , Resistencia a Medicamentos , Humanos , Enfermedades del Sistema Inmune/tratamiento farmacológico , Enfermedades del Sistema Inmune/enzimología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/enzimología , Malaria/tratamiento farmacológico , Malaria/enzimología , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología
3.
Bioorg Chem ; 117: 105463, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34753058

RESUMEN

Human cathepsin B is a cysteine-dependent protease whose roles in both normal and diseased cellular states remain yet to be fully delineated. This is primarily due to overlapping substrate specificities and lack of unambiguously annotated physiological functions. In this work, a selective, cell-permeable, clickable and tagless small molecule cathepsin B probe, KDA-1, is developed and kinetically characterized. KDA-1 selectively targets active site Cys25 residue of cathepsin B for labeling and can detect active cellular cathepsin B in proteomes derived from live human MDA-MB-231 breast cancer cells and HEK293 cells. It is anticipated that KDA-1 probe will find suitable applications in functional proteomics involving human cathepsin B enzyme.


Asunto(s)
Catepsina B/química , Sondas Moleculares/química , Catepsina B/genética , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Sondas Moleculares/síntesis química , Estructura Molecular , Relación Estructura-Actividad
4.
Molecules ; 25(3)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041276

RESUMEN

Human cathepsin L belongs to the cathepsin family of proteolytic enzymes with primarily an endopeptidase activity. Although its primary functions were originally thought to be only of a housekeeping enzyme that degraded intracellular and endocytosed proteins in lysosome, numerous recent studies suggest that it plays many critical and specific roles in diverse cellular settings. Not surprisingly, the dysregulated function of cathepsin L has manifested itself in several human diseases, making it an attractive target for drug development. Unfortunately, several redundant and isoform-specific functions have recently emerged, adding complexities to the drug discovery process. To address this, a series of chemical biology tools have been developed that helped define cathepsin L biology with exquisite precision in specific cellular contexts. This review elaborates on the recently developed small molecule inhibitors and probes of human cathepsin L, outlining their mechanisms of action, and describing their potential utilities in dissecting unknown function.


Asunto(s)
Catepsina L/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Descubrimiento de Drogas/métodos , Humanos , Lisosomas/metabolismo
5.
Bioorg Chem ; 85: 505-514, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30802807

RESUMEN

Human cathepsin L is a ubiquitously expressed endopeptidase and is known to play critical roles in a wide variety of cellular signaling events. Its overexpression has been implicated in numerous human diseases, including highly invasive forms of cancer. Inhibition of cathepsin L is therefore considered a viable therapeutic strategy. Unfortunately, several redundant and even opposing roles of cathepsin L have recently emerged. Selective cathepsin L probes are therefore needed to dissect its function in context-specific manner before significant resources are directed into drug discovery efforts. Herein, the development of a clickable and tagless activity-based probe of cathepsin L is reported. The probe is highly efficient, active-site directed and activity-dependent, selective, cell penetrable, and non-toxic to human cells. Using zebrafish model, we demonstrate that the probe can inhibit cathepsin L function in vivo during the hatching process. It is anticipated that the probe will be a highly effective tool in dissecting cathepsin L biology at the proteome levels in both normal physiology and human diseases, thereby facilitating drug-discovery efforts targeting cathepsin L.


Asunto(s)
Catepsina L/antagonistas & inhibidores , Sondas Moleculares/farmacología , Animales , Dominio Catalítico/efectos de los fármacos , Catepsina L/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Química Clic , Humanos , Sondas Moleculares/síntesis química , Sondas Moleculares/toxicidad , Pez Cebra
6.
Molecules ; 23(9)2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30231499

RESUMEN

The practice of medicine is ever evolving. Diagnosing disease, which is often the first step in a cure, has seen a sea change from the discerning hands of the neighborhood physician to the use of sophisticated machines to use of information gleaned from biomarkers obtained by the most minimally invasive of means. The last 100 or so years have borne witness to the enormous success story of allopathy, a practice that found favor over earlier practices of medical purgatory and homeopathy. Nevertheless, failures of this approach coupled with the omics and bioinformatics revolution spurred precision medicine, a platform wherein the molecular profile of an individual patient drives the selection of therapy. Indeed, precision medicine-based therapies that first found their place in oncology are rapidly finding uses in autoimmune, renal and other diseases. More recently a new renaissance that is shaping everyday life is making its way into healthcare. Drug discovery and medicine that started with Ayurveda in India are now benefiting from an altogether different artificial intelligence (AI)-one which is automating the invention of new chemical entities and the mining of large databases in health-privacy-protected vaults. Indeed, disciplines as diverse as language, neurophysiology, chemistry, toxicology, biostatistics, medicine and computing have come together to harness algorithms based on transfer learning and recurrent neural networks to design novel drug candidates, a priori inform on their safety, metabolism and clearance, and engineer their delivery but only on demand, all the while cataloging and comparing omics signatures across traditionally classified diseases to enable basket treatment strategies. This review highlights inroads made and being made in directed-drug design and molecular therapy.


Asunto(s)
Aprendizaje Profundo , Descubrimiento de Drogas , Medicina de Precisión , Inteligencia Artificial , Diseño de Fármacos , Reposicionamiento de Medicamentos , Redes Neurales de la Computación , Sistemas de Atención de Punto
7.
PLoS One ; 13(6): e0198937, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29944670

RESUMEN

Although cirrhosis is a key risk factor for the development of hepatocellular carcinoma (HCC), mounting evidence indicates that in a subset of patients presenting with non-alcoholic steatohepatitis (NASH) HCC manifests in the absence of cirrhosis. Given the sheer size of the ongoing non-alcoholic fatty liver disease (NAFLD) epidemic and the dismal prognosis associated with late-stage primary liver cancer there is an urgent need for HCC surveillance in the NASH population. Using serum levels of HCC biomarkers as vectors and biopsy-proven HCC or no HCC as outputs / binary classifier, a supervised learning campaign was undertaken to develop a minimally invasive technique for making a diagnosis of HCC in a clinically relevant model of NASH. Adult mice randomized to control diet or a fast food diet (FFD) were followed for up to 14 mo and serum level of a panel of HCC-relevant biomarkers was compared with liver biopsies at 3 and 14 mo. Both NAFLD Activity Score (NAS) and hepatic hydroxyproline content were elevated at 3 and 14 mo on FFD. Picrosirius red staining of liver sections revealed a filigree pattern of fibrillar collagen deposition with no cirrhosis at 14 mo on FFD. Nevertheless, 46% of animals bore one or more tumors on their livers confirmed as HCC in hematoxylin-eosin-stained liver sections. In this training set, receiver operating characteristic (ROC) curves analysis for serum levels of the HCC biomarkers osteopontin (OPN), alpha-fetoprotein (AFP) and Dickkopf-1 (DKK1) returned concordance-statistic/area under ROC curve of ≥ 0.89. Serum levels of OPN (threshold, 218 ng/mL; sensitivity, 82%; specificity, 86%), AFP (136 ng/mL; 91%; 97%) and DKK1 (2.4 ng/mL; 82%; 81%) diagnostic for HCC were confirmed in a test set comprising mice on control diet or FFD and mice subjected to hepatic ischemia-reperfusion injury. These data suggest that levels of circulating OPN, AFP and DKK1 can be used to make a diagnosis of HCC in a clinically relevant model of NASH.


Asunto(s)
Carcinoma Hepatocelular/sangre , Neoplasias Hepáticas/sangre , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/sangre , Animales , Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/patología , Aprendizaje Automático Supervisado
8.
Hum Vaccin Immunother ; 12(3): 593-8, 2016 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-26453454

RESUMEN

HLA-DR is the most commonly expressed and likely the most medically important human MHC class II, antigen presenting protein. In a normal immune response, HLA-DR binds to antigenic peptide and the HLA-DR/peptide complex binds to a T-cell receptor, thus contributing to T-cell activation and stimulation of an immune response against the antigen. When foreign antigen is not present, HLA-DR binds endogenous peptide which, under normal conditions does not stimulate an immune response. In most cases, the human peptide is CLIP, but a certain percentage of HLA-DR molecules will be present at the cell surface with other human peptides. We have recently shown that cell surface, CLIP/HLA-DR ratios are a measure of peptide heterogeneity, and in particular, changes in CLIP/HLA-DR ratios represent changes in the occupancy of HLA-DR by other, endogenous peptides. For example, treatment of cells with the HDAC inhibitor, Entinostat, leads to an upregulation of Cathepsin L1 and replacement of Cathepsin L1 senstitive peptides with HLA-DR binding, Cathepsin L1 resistant peptides, an alteration that can be at least partially assessed via assessment of CLIP/HLA-DR cell surface ratios. Here we assay for CLIP/HLA-DR ratios following treatment of immortalized B-cells with a variety of common drugs, almost all of which indicate significant changes in the CLIP/HLA-DR ratios. Furthermore, the CLIP/HLA-DR ratio changes parallel the impact of the drug panoply on cell viability, suggesting that alterations in the HLA-DR peptidome are governed by a variety of mechanisms, rather than exclusively dependent on a dedicated peptide loading process. These results raise questions about how FDA approved drugs may affect the immune response, and whether any of these drugs could be useful as vaccine adjuvants?


Asunto(s)
Presentación de Antígeno/efectos de los fármacos , Antígenos de Diferenciación de Linfocitos B/análisis , Linfocitos B/química , Linfocitos B/efectos de los fármacos , Antígenos HLA-DR/análisis , Antígenos de Histocompatibilidad Clase II/análisis , Humanos
9.
Rapid Commun Mass Spectrom ; 28(24): 2681-9, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25380489

RESUMEN

RATIONALE: Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry combined with isotope labeling methods are effective for protein and peptide quantification, but limited in their multiplexing capacity, cost-effectiveness and dynamic range. This study investigates MALDI-MS-based quantification of peptide phosphorylation without labeling, and aims to overcome the shot-to-shot variability of MALDI using a mathematical transformation and extended data acquisition times. METHODS: A linear relationship between the reciprocal of phosphopeptide mole fraction and the reciprocal of phosphorylated-to-unphosphorylated signal ratio is derived, and evaluated experimentally using three separate phosphopeptide systems containing phosphorylated serine, threonine and tyrosine residues: mixtures of phosphopeptide and its des-phospho-analog with known stoichiometry measured by vacuum MALDI-linear ion trap mass spectrometry and fit to the linear model. The model is validated for quantifying in vitro phosphorylation assays with inhibition studies on Cdk2/cyclinA. RESULTS: Dynamic range of picomoles to femtomoles, good accuracy (deviations of 1.5-3.0% from expected values) and reproducibility (relative standard deviation (RSD) = 4.3-6.3%) are achieved. Inhibition of cyclin-dependent kinase phosphorylation by the classical inhibitors olomoucine and r-roscovitine was evaluated and IC50 values found to be in agreement with reported literature values. These results, achieved with single-point calibration, without isotope or chromatography, compare favorably to those arrived at using isotope dilution (p > 0.5 for accuracy). CONCLUSIONS: The mathematical relationship derived here can be applied to a method that we term Double Reciprocal Isotope-free Phosphopeptide Quantification (DRIP-Q), as a strategy for quantification of in vitro phosphorylation assays, the first MALDI-based, isotope- and calibration curve-free method of its type. These results also pave the way for further systematic studies investigating the effect of peptide composition and experimental conditions on quantitative, label-free MALDI.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Fosfopéptidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Aminoácidos , Calibración , Ciclina A/antagonistas & inhibidores , Ciclina A/metabolismo , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/metabolismo , Modelos Lineales , Datos de Secuencia Molecular , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosforilación , Reproducibilidad de los Resultados
10.
Chem Commun (Camb) ; 50(74): 10875-8, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25089379

RESUMEN

A hybrid-design approach is undertaken to develop a highly potent and selective inhibitor of human cathepsin L. Studies involving human breast carcinoma MDA-MB-231 cells establish that this inhibitor can successfully block intracellular cathepsin L activity, and retard the cell-migratory potential of these highly metastatic cells.


Asunto(s)
Catepsina L/antagonistas & inhibidores , Catepsina L/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Colágeno Tipo I/metabolismo , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Diseño de Fármacos , Humanos , Cinética , Unión Proteica
11.
Bioorg Med Chem ; 21(11): 2975-87, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23623677

RESUMEN

Cysteine cathepsins are an important class of enzymes that coordinate a variety of important cellular processes, and are implicated in various types of human diseases. However, small molecule inhibitors that are cell-permeable and non-peptidyl in nature are scarcely available. Herein the synthesis and development of sulfonyloxiranes as covalent inhibitors of cysteine cathepsins are reported. From a library of compounds, compound 5 is identified as a selective inhibitor of cysteine cathepsins. Live cell imaging and immunocytochemistry of metastatic human breast carcinoma MDA-MB-231 cells document the efficacy of compound 5 in inhibiting cysteine cathepsin activity in living cells. A cell-motility assay demonstrates that compound 5 is effective in mitigating the cell-migratory potential of highly metastatic breast carcinoma MDA-MB-231 cells.


Asunto(s)
Catepsinas/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/síntesis química , Cisteína/química , Compuestos Epoxi/síntesis química , Sulfonas/síntesis química , Catepsinas/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/farmacología , Compuestos Epoxi/química , Compuestos Epoxi/farmacología , Humanos , Cinética , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Sulfonas/química , Sulfonas/farmacología , Termodinámica
12.
Bioorg Med Chem ; 21(11): 3262-71, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23598249

RESUMEN

Hepatitis C virus (HCV) NS5B polymerase is a key target for anti-HCV therapeutics development. Herein, we report the synthesis and in vitro evaluation of anti-NS5B polymerase activity of a molecular hybrid of our previously reported lead compounds 1 (IC50=7.7 µM) and 2 (IC50=10.6 µM) as represented by hybrid compound 27 (IC50=6.7 µM). We have explored the optimal substituents on the terminal phenyl ring of the 3-phenoxybenzylidene moiety in 27, by generating a set of six analogs. This resulted in the identification of compound 34 with an IC50 of 2.6 µM. To probe the role of stereochemistry towards the observed biological activity, we synthesized and evaluated the D-isomers 41 (IC50=19.3 µM) and 45 (IC50=5.4 µM) as enantiomers of the l-isomers 27 and 34, respectively. The binding site of compounds 32 and 34 was mapped to palm pocket-I (PP-I) of NS5B. The docking models of 34 and 45 within the PP-I of NS5B were investigated to envisage the molecular mechanism of inhibition.


Asunto(s)
Antivirales/síntesis química , Hepacivirus/química , Fenilalanina/química , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Tiazolidinas/síntesis química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/química , Sitios de Unión , Diseño de Fármacos , Hepacivirus/enzimología , Simulación del Acoplamiento Molecular , ARN Polimerasa Dependiente del ARN/química , Estereoisomerismo , Relación Estructura-Actividad , Tiazolidinas/química , Proteínas no Estructurales Virales/química
13.
Chem Biol Drug Des ; 80(4): 489-99, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22726577

RESUMEN

A structure-based design approach has been applied to develop 2-(arylsulfonyl)oxiranes as potential covalent inhibitors of protein tyrosine phosphatases. A detailed kinetic analysis of inactivation by these covalent inhibitors reveals that this class of compounds inhibits a panel of protein tyrosine phosphatases in a time- and dose-dependent manner, consistent with the covalent modification of the enzyme active site. An inactivation experiment in the presence of sodium arsenate, a known competitive inhibitor of protein tyrosine phosphatase, indicated that these inhibitors were active site bound. This finding is consistent with the mass spectrometric analysis of the covalently modified protein tyrosine phosphatase enzyme. Additional experiments indicated that these compounds remained inert toward other classes of arylphosphate-hydrolyzing enzymes, and alkaline and acid phosphatases. Cell-based experiments with human A549 lung cancer cell lines indicated that 2-(phenylsulfonyl)oxirane (1) caused an increase in intracellular pTyr levels in a dose-dependent manner thereby suggesting its cell-permeable nature. Taken together, the newly identified 2-(arylsulfonyl)oxiranyl moiety could serve as a novel chemotype for the development of activity-based probes and therapeutic agents against protein tyrosine phosphatase superfamily of enzymes.


Asunto(s)
Compuestos Epoxi/química , Compuestos Epoxi/farmacología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Diseño de Fármacos , Compuestos Epoxi/síntesis química , Compuestos Epoxi/farmacocinética , Humanos , Modelos Moleculares , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...