Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Cell Biol ; 182: 313-327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38359985

RESUMEN

The APOBEC3 family of cytosine deaminases, which target single-stranded DNA and RNA of viruses and retroelements as part of the innate immune defense, generate mutations in many human cancers. Although the APOBEC3A paralog is a major endogenous source of these mutations, low APOBEC3A mRNA levels and protein abundance have hampered functional characterization. Extensive homology across APOBEC3 paralogs have further challenged the development of specific detection reagents. Here, we describe the isolation and use of monoclonal antibodies with specificity for APOBEC3A and the APOBEC3A/APOBEC3B/APOBEC3G proteins. We provide protocols and technical advice for detection and measurement of APOBEC3A protein across human cancer cell lines using standard immunoblotting and immunofluorescence protocols.


Asunto(s)
Neoplasias , Proteínas , Humanos , Proteínas/genética , Neoplasias/genética , Línea Celular , Mutación , Citidina Desaminasa/genética , Antígenos de Histocompatibilidad Menor/genética
2.
Cancer Immunol Res ; 12(6): 673-686, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38408184

RESUMEN

Chromosomal instability is a hallmark of human cancer that is associated with aggressive disease characteristics. Chromosome mis-segregations help fuel natural selection, but they risk provoking a cGAS-STING immune response through the accumulation of cytosolic DNA. The mechanisms of how tumors benefit from chromosomal instability while mitigating associated risks, such as enhanced immune surveillance, are poorly understood. Here, we identify cGAS-STING-dependent upregulation of the nuclease TREX1 as an adaptive, negative feedback mechanism that promotes immune evasion through digestion of cytosolic DNA. TREX1 loss diminishes tumor growth, prolongs survival of host animals, increases tumor immune infiltration, and potentiates response to immune checkpoint blockade selectively in tumors capable of mounting a type I IFN response downstream of STING. Together, these data demonstrate that TREX1 induction shields chromosomally unstable tumors from immune surveillance by dampening type I IFN production and suggest that TREX1 inhibitors might be used to selectively target tumors that have retained the inherent ability to mount an IFN response downstream of STING. See related article by Lim et al., p. 663.


Asunto(s)
Exodesoxirribonucleasas , Interferón Tipo I , Fosfoproteínas , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Interferón Tipo I/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Animales , Humanos , Ratones , Neoplasias/inmunología , Neoplasias/genética , Evasión Inmune , Línea Celular Tumoral , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Escape del Tumor
3.
Cancers (Basel) ; 16(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38254863

RESUMEN

APOBEC cytosine deaminases are prominent mutators in cancer, mediating mutations in over 50% of cancers. APOBEC mutagenesis has been linked to tumor heterogeneity, persistent cell evolution, and therapy responses. While emerging evidence supports the impact of APOBEC mutagenesis on cancer progression, the understanding of its contribution to cancer susceptibility and malignant transformation is limited. We examine the existing evidence for the role of APOBEC mutagenesis in carcinogenesis on the basis of the reported associations between germline polymorphisms in genes encoding APOBEC enzymes and cancer risk, insights into APOBEC activities from sequencing efforts of both malignant and non-malignant human tissues, and in vivo studies. We discuss key knowledge gaps and highlight possible ways to gain a deeper understanding of the contribution of APOBEC mutagenesis to cancer development.

4.
NAR Cancer ; 5(4): zcad058, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38155930

RESUMEN

Apolipoprotein B messenger RNA (mRNA) editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases cause genetic instability during cancer development. Elevated APOBEC3A (A3A) levels result in APOBEC signature mutations; however, mechanisms regulating A3A abundance in breast cancer are unknown. Here, we show that dysregulating the ubiquitin-proteasome system with proteasome inhibitors, including Food and Drug Administration-approved anticancer drugs, increased A3A abundance in breast cancer and multiple myeloma cell lines. Unexpectedly, elevated A3A occurs via an ∼100-fold increase in A3A mRNA levels, indicating that proteasome inhibition triggers a transcriptional response as opposed to or in addition to blocking A3A degradation. This transcriptional regulation is mediated in part through FBXO22, a protein that functions in SKP1-cullin-F-box ubiquitin ligase complexes and becomes dysregulated during carcinogenesis. Proteasome inhibitors increased cellular cytidine deaminase activity, decreased cellular proliferation and increased genomic DNA damage in an A3A-dependent manner. Our findings suggest that proteasome dysfunction, either acquired during cancer development or induced therapeutically, could increase A3A-induced genetic heterogeneity and thereby influence therapeutic responses in patients.

5.
Nature ; 607(7920): 799-807, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859169

RESUMEN

The APOBEC3 family of cytosine deaminases has been implicated in some of the most prevalent mutational signatures in cancer1-3. However, a causal link between endogenous APOBEC3 enzymes and mutational signatures in human cancer genomes has not been established, leaving the mechanisms of APOBEC3 mutagenesis poorly understood. Here, to investigate the mechanisms of APOBEC3 mutagenesis, we deleted implicated genes from human cancer cell lines that naturally generate APOBEC3-associated mutational signatures over time4. Analysis of non-clustered and clustered signatures across whole-genome sequences from 251 breast, bladder and lymphoma cancer cell line clones revealed that APOBEC3A deletion diminished APOBEC3-associated mutational signatures. Deletion of both APOBEC3A and APOBEC3B further decreased APOBEC3 mutation burdens, without eliminating them. Deletion of APOBEC3B increased APOBEC3A protein levels, activity and APOBEC3A-mediated mutagenesis in some cell lines. The uracil glycosylase UNG was required for APOBEC3-mediated transversions, whereas the loss of the translesion polymerase REV1 decreased overall mutation burdens. Together, these data represent direct evidence that endogenous APOBEC3 deaminases generate prevalent mutational signatures in human cancer cells. Our results identify APOBEC3A as the main driver of these mutations, indicate that APOBEC3B can restrain APOBEC3A-dependent mutagenesis while contributing its own smaller mutation burdens and dissect mechanisms that translate APOBEC3 activities into distinct mutational signatures.


Asunto(s)
Desaminasas APOBEC , Mutagénesis , Neoplasias , Desaminasas APOBEC/deficiencia , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Línea Celular Tumoral , ADN Polimerasa Dirigida por ADN/metabolismo , Eliminación de Gen , Genoma Humano , Humanos , Mutagénesis/genética , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Uracil-ADN Glicosidasa/metabolismo
6.
Nat Commun ; 12(1): 4917, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34389714

RESUMEN

APOBEC3A is a cytidine deaminase driving mutagenesis in tumors. While APOBEC3A-induced mutations are common, APOBEC3A expression is rarely detected in cancer cells. This discrepancy suggests a tightly controlled process to regulate episodic APOBEC3A expression in tumors. In this study, we find that both viral infection and genotoxic stress transiently up-regulate APOBEC3A and pro-inflammatory genes using two distinct mechanisms. First, we demonstrate that STAT2 promotes APOBEC3A expression in response to foreign nucleic acid via a RIG-I, MAVS, IRF3, and IFN-mediated signaling pathway. Second, we show that DNA damage and DNA replication stress trigger a NF-κB (p65/IkBα)-dependent response to induce expression of APOBEC3A and other innate immune genes, independently of DNA or RNA sensing pattern recognition receptors and the IFN-signaling response. These results not only reveal the mechanisms by which tumors could episodically up-regulate APOBEC3A but also highlight an alternative route to stimulate the immune response after DNA damage independently of cGAS/STING or RIG-I/MAVS.


Asunto(s)
Citidina Desaminasa/genética , Daño del ADN , Regulación de la Expresión Génica , Inmunidad/genética , Proteínas/genética , Transducción de Señal/fisiología , Línea Celular , Línea Celular Tumoral , Citidina Desaminasa/metabolismo , Interacciones Huésped-Patógeno , Humanos , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células THP-1 , Factor de Transcripción ReIA/metabolismo , Regulación hacia Arriba , Virus/crecimiento & desarrollo
7.
Nat Genet ; 52(9): 884-890, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32719516

RESUMEN

Chromothripsis and kataegis are frequently observed in cancer and may arise from telomere crisis, a period of genome instability during tumorigenesis when depletion of the telomere reserve generates unstable dicentric chromosomes1-5. Here we examine the mechanism underlying chromothripsis and kataegis by using an in vitro telomere crisis model. We show that the cytoplasmic exonuclease TREX1, which promotes the resolution of dicentric chromosomes4, plays a prominent role in chromothriptic fragmentation. In the absence of TREX1, the genome alterations induced by telomere crisis primarily involve breakage-fusion-bridge cycles and simple genome rearrangements rather than chromothripsis. Furthermore, we show that the kataegis observed at chromothriptic breakpoints is the consequence of cytosine deamination by APOBEC3B. These data reveal that chromothripsis and kataegis arise from a combination of nucleolytic processing by TREX1 and cytosine editing by APOBEC3B.


Asunto(s)
Citidina Desaminasa/genética , Exodesoxirribonucleasas/genética , Fosfoproteínas/genética , Telómero/genética , Desaminasas APOBEC , Línea Celular Tumoral , Cromotripsis , Citosina Desaminasa/genética , Inestabilidad Genómica/genética , Humanos , Mutación/genética , Neoplasias/genética , Células U937
8.
Front Immunol ; 10: 569, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30972064

RESUMEN

The functional plasticity and anti-tumor potential of human γδ T cells have been widely studied. However, the epigenetic regulation of γδ T-cell/tumor cell interactions has been poorly investigated. In the present study, we show that treatment with the histone deacetylase inhibitor Valproic acid (VPA) significantly enhanced the expression and/or release of the NKG2D ligands MICA, MICB and ULBP-2, but not ULBP-1 in the pancreatic carcinoma cell line Panc89 and the prostate carcinoma cell line PC-3. Under in vitro tumor co-culture conditions, the expression of full length and the truncated form of the NKG2D receptor in γδ T cells was significantly downregulated. Furthermore, using a newly established flow cytometry-based method to analyze histone acetylation (H3K9ac) in γδ T cells, we showed constitutive H3K9aclow and inducible H3K9achigh expression in Vδ2 T cells. The detailed analysis of H3K9aclow Vδ2 T cells revealed a significant reversion of TEMRA to TEM phenotype during in vitro co-culture with pancreatic ductal adenocarcinoma cells. Our study uncovers novel mechanisms of how epigenetic modifiers modulate γδ T-cell differentiation during interaction with tumor cells. This information is important when considering combination therapy of VPA with the γδ T-cell-based immunotherapy for the treatment of certain types of cancer.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Linfocitos Intraepiteliales/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/biosíntesis , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Ácido Valproico/farmacología , Acetilación , Línea Celular Tumoral , Proteínas Ligadas a GPI/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Histonas/metabolismo , Humanos , Memoria Inmunológica/inmunología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Activación de Linfocitos/inmunología , Masculino , Células PC-3 , Neoplasias Pancreáticas/inmunología , Neoplasias de la Próstata/inmunología , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA